Skip to main content

Advertisement

Log in

Recent advances in understanding the roles of sialyltransferases in tumor angiogenesis and metastasis

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Abnormal glycosylation is a common characteristic of cancer cells and there is a lot of evidence that glycans can regulate the biological behavior of tumor cells. Sialylation modification, a form of glycosylation modification, plays an important role in cell recognition, cell adhesion and cell signal transduction. Abnormal sialylation on the surface of tumor cells is related to tumor migration and invasion, with abnormal expression of sialyltransferases being one of the main causes of abnormal sialylation. Recent studies provide a better understanding of the importance of the sialyltransferases, and how they influences cancer cell angiogenesis, adhesion and Epithelial-Mesenchymal Transition (EMT). The present review will provide a direction for future studies in determining the roles of sialyltransferases in cancer metastasis, and abnormal sialyltransferases are likely to be potential biomarkers for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ben-David, U., Beroukhim, R., Golub, T.R.: Genomic evolution of cancer models: perils and opportunities. Nat. Rev. Cancer. 19(2), 97–109 (2019). https://doi.org/10.1038/s41568-018-0095-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Martin, O.A., Anderson, R.L., Narayan, K., MacManus, M.P.: Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat. Rev. Clin. Oncol. 14(1), 32–44 (2017). https://doi.org/10.1038/nrclinonc.2016.128

    Article  CAS  PubMed  Google Scholar 

  4. Sharma, R., Sharma, R., Khaket, T.P., Dutta, C., Chakraborty, B., Mukherjee, T.K.: Breast cancer metastasis: putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol. (Dordr.). 40(3), 199–208 (2017). https://doi.org/10.1007/s13402-017-0324-x

    Article  CAS  Google Scholar 

  5. Sakamoto, S., Kyprianou, N.: Targeting anoikis resistance in prostate cancer metastasis. Mol. Asp. Med. 31(2), 205–214 (2010). https://doi.org/10.1016/j.mam.2010.02.001

    Article  CAS  Google Scholar 

  6. Paul, C.D., Mistriotis, P., Konstantopoulos, K.: Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer. 17(2), 131–140 (2017). https://doi.org/10.1038/nrc.2016.123

    Article  CAS  PubMed  Google Scholar 

  7. Adak, A.K., Yu, C.C., Liang, C.F., Lin, C.C.: Synthesis of sialic acid-containing saccharides. Curr. Opin. Chem. Biol. 17(6), 1030–1038 (2013). https://doi.org/10.1016/j.cbpa.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  8. Büll, C., Heise, T., Adema, G.J., Boltje, T.J.: Sialic acid Mimetics to target the Sialic acid-Siglec Axis. Trends Biochem. Sci. 41(6), 519–531 (2016). https://doi.org/10.1016/j.tibs.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  9. Wen, K.C., Sung, P.L., Hsieh, S.L., Chou, Y.T., Lee, O.K., Wu, C.W., Wang, P.H.: alpha2,3-sialyltransferase type I regulates migration and peritoneal dissemination of ovarian cancer cells. Oncotarget. 8(17), 29013–29027 (2017). https://doi.org/10.18632/oncotarget.15994

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vajaria, B.N., Patel, K.R., Begum, R., Patel, P.S.: Sialylation: an avenue to target Cancer cells. Pathol. Oncol. Res. 22(3), 443–447 (2016). https://doi.org/10.1007/s12253-015-0033-6

    Article  CAS  PubMed  Google Scholar 

  11. Jiahui, L., Xixi, C., Shujing, W.: The role of sialic acid in tumor immune escape. Chemist. Life. 38(6), 832–838 (2018). https://doi.org/10.13488/j.smhx.20180609

    Article  Google Scholar 

  12. Bull, C., Stoel, M.A., den Brok, M.H., Adema, G.J.: Sialic acids sweeten a tumor's life. Cancer Res. 74(12), 3199–3204 (2014). https://doi.org/10.1158/0008-5472.CAN-14-0728

    Article  CAS  PubMed  Google Scholar 

  13. Patel, S.A., Minn, A.J.: Combination Cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity. 48(3), 417–433 (2018). https://doi.org/10.1016/j.immuni.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmitt, M.W., Loeb, L.A., Salk, J.J.: The influence of subclonal resistance mutations on targeted cancer therapy. Nat. Rev. Clin. Oncol. 13(6), 335–347 (2016). https://doi.org/10.1038/nrclinonc.2015.175

    Article  CAS  PubMed  Google Scholar 

  15. Chen, W.H., Luo, G.F., Zhang, X.Z.: Recent advances in subcellular targeted Cancer therapy based on functional materials. Adv. Mater. 31(3), e1802725 (2019). https://doi.org/10.1002/adma.201802725

    Article  CAS  PubMed  Google Scholar 

  16. Drinnan, N.B., Halliday, J., Ramsdale, T.: Inhibitors of sialyltransferases: potential roles in tumor growth and metastasis. Mini-Rev. Med. Chem. 3(6), 501–517 (2003). https://doi.org/10.2174/1389557033487881

    Article  CAS  PubMed  Google Scholar 

  17. Natoni, A., Macauley, M.S., O'Dwyer, M.E.: Targeting Selectins and their ligands in Cancer. Front. Oncol. 6, 93 (2016). https://doi.org/10.3389/fonc.2016.00093

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weijers, C.A., Franssen, M.C., Visser, G.M.: Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol. Adv. 26(5), 436–456 (2008). https://doi.org/10.1016/j.biotechadv.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Li, Y., Chen, X.: Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl. Microbiol. Biotechnol. 94(4), 887–905 (2012). https://doi.org/10.1007/s00253-012-4040-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhide, G.P., Colley, K.J.: Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem. Cell Biol. 147(2), 149–174 (2017). https://doi.org/10.1007/s00418-016-1520-x

    Article  CAS  PubMed  Google Scholar 

  21. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S., Delannoy, P.: The human sialyltransferase family. Biochimie. 83(8), 727–737 (2001). https://doi.org/10.1016/s0300-9084(01)01301-3

    Article  CAS  PubMed  Google Scholar 

  22. Datta, A.K.: Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs. Curr. Drug Targets. 10(6), 483–498 (2009). https://doi.org/10.2174/138945009788488422

    Article  CAS  PubMed  Google Scholar 

  23. Maso, K., Grigoletto, A., Pasut, G.: Transglutaminase and Sialyltransferase enzymatic approaches for polymer conjugation to proteins. Adv. Protein. Chem. Struct. Biol. 112, 123–142 (2018). https://doi.org/10.1016/bs.apcsb.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  24. Schnaar, R.L., Gerardy-Schahn, R., Hildebrandt, H.: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 94(2), 461–518 (2014). https://doi.org/10.1152/physrev.00033.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szabo, R., Skropeta, D.: Advancement of Sialyltransferase inhibitors: therapeutic challenges and opportunities. Med. Res. Rev. 37(2), 219–270 (2017). https://doi.org/10.1002/med.21407

    Article  PubMed  Google Scholar 

  26. Dall'Olio, F., Malagolini, N., Trinchera, M., Chiricolo, M.: Sialosignaling: sialyltransferases as engines of self-fueling loops in cancer progression. Biochim. Biophys. Acta. 1840(9), 2752–2764 (2014). https://doi.org/10.1016/j.bbagen.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  27. Taniguchi, A.: Promoter structure and transcriptional regulation of human beta-galactoside alpha2, 3-sialyltransferase genes. Curr. Drug Targets. 9(4), 310–316 (2008). https://doi.org/10.2174/138945008783954998

    Article  CAS  PubMed  Google Scholar 

  28. Shishido, F., Uemura, S., Nitta, T., Inokuchi, J.I.: Identification of a new liver-specific c-type mRNA transcriptional variant for mouse ST3GAL5 (GM3/GM4 synthase). Glycoconj. J. 34(5), 651–659 (2017). https://doi.org/10.1007/s10719-017-9788-1

    Article  CAS  PubMed  Google Scholar 

  29. Yo, S., Hamamura, K., Mishima, Y., Hamajima, K., Mori, H., Furukawa, K., Kondo, H., Tanaka, K., Sato, T., Miyazawa, K., Goto, S., Togari, A.: Deficiency of GD3 Synthase in Mice Resulting in the Attenuation of Bone Loss with Aging. Int. J. Mol. Sci. 20(11), (2019). https://doi.org/10.3390/ijms20112825

  30. Glavey, S.V., Manier, S., Natoni, A., Sacco, A., Moschetta, M., Reagan, M.R., Murillo, L.S., Sahin, I., Wu, P., Mishima, Y., Zhang, Y., Zhang, W., Zhang, Y., Morgan, G., Joshi, L., Roccaro, A.M., Ghobrial, I.M., O'Dwyer, M.E.: The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood. 124(11), 1765–1776 (2014). https://doi.org/10.1182/blood-2014-03-560862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sperandio, M.: The expanding role of alpha2-3 sialylation for leukocyte trafficking in vivo. Ann. N. Y. Acad. Sci. 1253, 201–205 (2012). https://doi.org/10.1111/j.1749-6632.2011.06271.x

    Article  CAS  PubMed  Google Scholar 

  32. Zhuo, Y., Bellis, S.L.: Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J. Biol. Chem. 286(8), 5935–5941 (2011). https://doi.org/10.1074/jbc.R110.191429

    Article  CAS  PubMed  Google Scholar 

  33. Lu, J., Gu, J.: Significance of beta-Galactoside alpha2,6 Sialyltranferase 1 in cancers. Molecules. 20(5), 7509–7527 (2015). https://doi.org/10.3390/molecules20057509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kitazume, S., Saido, T.C., Hashimoto, Y.: Alzheimer's beta-secretase cleaves a glycosyltransferase as a physiological substrate. Glycoconj. J. 20(1), 59–62 (2004). https://doi.org/10.1023/b:Glyc.0000016743.25495.45

    Article  CAS  PubMed  Google Scholar 

  35. Harduin-Lepers, A., Krzewinski-Recchi, M.A., Colomb, F., Foulquier, F., Groux-Degroote, S., Delannoy, P.: Sialyltransferases functions in cancers. Front. Biosci. (Elite Ed). 4(499–515), 499 (2012). https://doi.org/10.2741/396

    Article  Google Scholar 

  36. Dall'Olio, F., Chiricolo, M.: Sialyltransferases in cancer. Glycoconj. J. 18(11–12), 841–850 (2001). https://doi.org/10.1023/a:1022288022969

    Article  CAS  PubMed  Google Scholar 

  37. Tsuchida, A., Okajima, T., Furukawa, K., Ando, T., Ishida, H., Yoshida, A., Nakamura, Y., Kannagi, R., Kiso, M., Furukawa, K.: Synthesis of disialyl Lewis a (Le(a)) structure in colon cancer cell lines by a sialyltransferase, ST6GalNAc VI, responsible for the synthesis of alpha-series gangliosides. J. Biol. Chem. 278(25), 22787–22794 (2003). https://doi.org/10.1074/jbc.M211034200

    Article  CAS  PubMed  Google Scholar 

  38. Vandermeersch, S., Vanbeselaere, J., Delannoy, C.P., Drolez, A., Mysiorek, C., Guerardel, Y., Delannoy, P., Julien, S.: Accumulation of GD1alpha Ganglioside in MDA-MB-231 breast Cancer cells expressing ST6GalNAc V. Molecules. 20(4), 6913–6924 (2015). https://doi.org/10.3390/molecules20046913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, R.B., Cheng, D., Liao, S.M., Lu, B., Wang, Q.Y., Xie, N.Z., Troy Ii, F.A., Zhou, G.P.: The intrinsic relationship between structure and function of the Sialyltransferase ST8Sia family members. Curr. Top. Med. Chem. 17(21), 2359–2369 (2017). https://doi.org/10.2174/1568026617666170414150730

    Article  CAS  PubMed  Google Scholar 

  40. Yeh, S.C., Wang, P.Y., Lou, Y.W., Khoo, K.H., Hsiao, M., Hsu, T.L., Wong, C.H.: Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proc. Natl. Acad. Sci. U. S. A. 113(20), 5592–5597 (2016). https://doi.org/10.1073/pnas.1604721113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernardo, A., Harrison, F.E., McCord, M., Zhao, J., Bruchey, A., Davies, S.S., Jackson Roberts 2nd, L., Mathews, P.M., Matsuoka, Y., Ariga, T., Yu, R.K., Thompson, R., McDonald, M.P.: Elimination of GD3 synthase improves memory and reduces amyloid-beta plaque load in transgenic mice. Neurobiol. Aging. 30(11), 1777–1791 (2009). https://doi.org/10.1016/j.neurobiolaging.2007.12.022

    Article  CAS  PubMed  Google Scholar 

  42. Wang, S.H., Tsai, C.M., Lin, K.I., Khoo, K.H.: Advanced mass spectrometry and chemical analyses reveal the presence of terminal disialyl motif on mouse B-cell glycoproteins. Glycobiology. 23(6), 677–689 (2013). https://doi.org/10.1093/glycob/cwt008

    Article  CAS  PubMed  Google Scholar 

  43. Lin, C.Y., Lai, H.L., Chen, H.M., Siew, J.J., Hsiao, C.T., Chang, H.C., Liao, K.S., Tsai, S.C., Wu, C.Y., Kitajima, K., Sato, C., Khoo, K.H., Chern, Y.: Functional roles of ST8SIA3-mediated sialylation of striatal dopamine D2 and adenosine A2A receptors. Transl. Psychiatry. 9(1), 209 (2019). https://doi.org/10.1038/s41398-019-0529-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hildebrandt, H., Mühlenhoff, M., Weinhold, B., Gerardy-Schahn, R.: Dissecting polysialic acid and NCAM functions in brain development. J. Neurochem. 103(Suppl 1), 56–64 (2007). https://doi.org/10.1111/j.1471-4159.2007.04716.x

    Article  CAS  PubMed  Google Scholar 

  45. Angata, K.: Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie. 85(1–2), 195–206 (2003). https://doi.org/10.1016/s0300-9084(03)00051-8

    Article  CAS  PubMed  Google Scholar 

  46. Wang, X., Li, X., Zeng, Y.N., He, F., Yang, X.M., Guan, F.: Enhanced expression of polysialic acid correlates with malignant phenotype in breast cancer cell lines and clinical tissue samples. Int. J. Mol. Med. 37(1), 197–206 (2016). https://doi.org/10.3892/ijmm.2015.2395

    Article  CAS  PubMed  Google Scholar 

  47. Donnem, T., Reynolds, A.R., Kuczynski, E.A., Gatter, K., Vermeulen, P.B., Kerbel, R.S., Harris, A.L., Pezzella, F.: Non-angiogenic tumours and their influence on cancer biology. Nat. Rev. Cancer. 18(5), 323–336 (2018). https://doi.org/10.1038/nrc.2018.14

    Article  CAS  PubMed  Google Scholar 

  48. Döme, B., Hendrix, M.J.C., Paku, S., Tóvári, J., Tímár, J.: Alternative vascularization mechanisms in Cancer. Am. J. Pathol. 170(1), 1–15 (2007). https://doi.org/10.2353/ajpath.2007.060302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Palma, M., Biziato, D., Petrova, T.V.: Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer. 17(8), 457–474 (2017). https://doi.org/10.1038/nrc.2017.51

    Article  CAS  PubMed  Google Scholar 

  50. Yeo, H.L., Fan, T.C., Lin, R.J., Yu, J.C., Liao, G.S., Chen, E.S., Ho, M.Y., Lin, W.D., Chen, K., Chen, C.H., Hung, J.T., Wu, J.C., Chang, N.C., Chang, M.D., Yu, J., Yu, A.L.: Sialylation of vasorin by ST3Gal1 facilitates TGF-beta1-mediated tumor angiogenesis and progression. Int. J. Cancer. 144(8), 1996–2007 (2019). https://doi.org/10.1002/ijc.31891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Imamaki, R., Ogawa, K., Kizuka, Y., Komi, Y., Kojima, S., Kotani, N., Honke, K., Honda, T., Taniguchi, N., Kitazume, S.: Glycosylation controls cooperative PECAM-VEGFR2-beta3 integrin functions at the endothelial surface for tumor angiogenesis. Oncogene. 37(31), 4287–4299 (2018). https://doi.org/10.1038/s41388-018-0271-7

    Article  CAS  PubMed  Google Scholar 

  52. Mandal, C., Sarkar, S., Chatterjee, U., Schwartz-Albiez, R., Mandal, C.: Disialoganglioside GD3-synthase over expression inhibits survival and angiogenesis of pancreatic cancer cells through cell cycle arrest at S-phase and disruption of integrin-beta1-mediated anchorage. Int. J. Biochem. Cell Biol. 53, 162–173 (2014). https://doi.org/10.1016/j.biocel.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  53. Zeng, G., Gao, L., Birklé, S., Yu, R.K.: Suppression of ganglioside GD3 expression in a rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Res. 60(23), 6670–6676 (2000)

    CAS  PubMed  Google Scholar 

  54. Haas, N.B., Manola, J., Uzzo, R.G., Flaherty, K.T., Wood, C.G., Kane, C., Jewett, M., Dutcher, J.P., Atkins, M.B., Pins, M., Wilding, G., Cella, D., Wagner, L., Matin, S., Kuzel, T.M., Sexton, W.J., Wong, Y.-N., Choueiri, T.K., Pili, R., Puzanov, I., Kohli, M., Stadler, W., Carducci, M., Coomes, R., DiPaola, R.S.: Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet. 387(10032), 2008–2016 (2016). https://doi.org/10.1016/s0140-6736(16)00559-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferguson, F.M., Gray, N.S.: Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17(5), 353–377 (2018). https://doi.org/10.1038/nrd.2018.21

    Article  CAS  PubMed  Google Scholar 

  56. Chen, J.Y., Tang, Y.A., Huang, S.M., Juan, H.F., Wu, L.W., Sun, Y.C., Wang, S.C., Wu, K.W., Balraj, G., Chang, T.T., Li, W.S., Cheng, H.C., Wang, Y.C.: A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res. 71(2), 473–483 (2011). https://doi.org/10.1158/0008-5472.Can-10-1303

    Article  CAS  PubMed  Google Scholar 

  57. Alimbetov, D., Askarova, S., Umbayev, B., Davis, T., Kipling, D.: Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int. J. Mol. Sci. 19(6), (2018). https://doi.org/10.3390/ijms19061690

  58. Hamidi, H., Ivaska, J.: Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer. 18(9), 533–548 (2018). https://doi.org/10.1038/s41568-018-0038-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sousa, B., Pereira, J., Paredes, J.: The crosstalk between cell adhesion and cancer metabolism. Int J Mol Sci 20(8) (2019). https://doi.org/10.3390/ijms20081933

  60. Francavilla, C., Maddaluno, L., Cavallaro, U.: The functional role of cell adhesion molecules in tumor angiogenesis. Semin. Cancer Biol. 19(5), 298–309 (2009). https://doi.org/10.1016/j.semcancer.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  61. Feng, Y., Ma, X., Deng, L., Yao, B., Xiong, Y., Wu, Y., Wang, L., Ma, Q., Ma, F.: Role of selectins and their ligands in human implantation stage. Glycobiology. 27(5), 385–391 (2017). https://doi.org/10.1093/glycob/cwx009

    Article  CAS  PubMed  Google Scholar 

  62. Borsig, L.: Selectins in cancer immunity. Glycobiology. 28(9), 648–655 (2018). https://doi.org/10.1093/glycob/cwx105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Läubli, H., Borsig, L.: Selectins promote tumor metastasis. Semin. Cancer Biol. 20(3), 169–177 (2010). https://doi.org/10.1016/j.semcancer.2010.04.005

    Article  CAS  PubMed  Google Scholar 

  64. St Hill, C.A.: Interactions between endothelial selectins and cancer cells regulate metastasis. Front. Biosci. (Landmark Ed). 16(3233–3251), 3233 (2011). https://doi.org/10.2741/3909

    Article  CAS  Google Scholar 

  65. Gout, S., Tremblay, P.L., Huot, J.: Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin. Exp. Metastasis. 25(4), 335–344 (2008). https://doi.org/10.1007/s10585-007-9096-4

    Article  CAS  PubMed  Google Scholar 

  66. Cui, H.X., Wang, H., Wang, Y., Song, J., Tian, H., Xia, C., Shen, Y.: ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules. Oncol. Rep. 36(6), 3317–3324 (2016). https://doi.org/10.3892/or.2016.5180

    Article  CAS  PubMed  Google Scholar 

  67. Perez-Garay, M., Arteta, B., Llop, E., Cobler, L., Pages, L., Ortiz, R., Ferri, M.J., de Bolos, C., Figueras, J., de Llorens, R., Vidal-Vanaclocha, F., Peracaula, R.: alpha2,3-Sialyltransferase ST3Gal IV promotes migration and metastasis in pancreatic adenocarcinoma cells and tends to be highly expressed in pancreatic adenocarcinoma tissues. Int J Biochem Cell Biol. 45(8), 1748–1757 (2013). https://doi.org/10.1016/j.biocel.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  68. Brown, J.R., Fuster, M.M., Whisenant, T., Esko, J.D.: Expression patterns of alpha 2,3-sialyltransferases and alpha 1,3-fucosyltransferases determine the mode of sialyl Lewis X inhibition by disaccharide decoys. J. Biol. Chem. 278(26), 23352–23359 (2003). https://doi.org/10.1074/jbc.M303093200

    Article  CAS  PubMed  Google Scholar 

  69. Natoni, A., Farrell, M.L., Harris, S., Falank, C., Kirkham-McCarthy, L., Macauley, M.S., Reagan, M.R., O'Dwyer, M.: Sialyltransferase inhibition leads to inhibition of tumor cell interactions with E-selectin, VCAM1, and MADCAM1, and improves survival in a human multiple myeloma mouse model. Haematologica. 105(2), 457–467 (2020). https://doi.org/10.3324/haematol.2018.212266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vehlow, A., Storch, K., Matzke, D., Cordes, N.: Molecular targeting of Integrins and integrin-associated signaling networks in radiation oncology. Recent Results Cancer Res. 198, 89–106 (2016). https://doi.org/10.1007/978-3-662-49651-0_4

    Article  CAS  PubMed  Google Scholar 

  71. Gu, J., Isaji, T., Sato, Y., Kariya, Y., Fukuda, T.: Importance of N-glycosylation on alpha5beta1 integrin for its biological functions. Biol. Pharm. Bull. 32(5), 780–785 (2009). https://doi.org/10.1248/bpb.32.780

    Article  CAS  PubMed  Google Scholar 

  72. Shaikh, F.M., Seales, E.C., Clem, W.C., Hennessy, K.M., Zhuo, Y., Bellis, S.L.: Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms. Exp. Cell Res. 314(16), 2941–2950 (2008). https://doi.org/10.1016/j.yexcr.2008.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu, S., Fan, J., Liu, L., Zhang, L., Wang, S., Zhang, J.: Caveolin-1 up-regulates integrin alpha2,6-sialylation to promote integrin alpha5beta1-dependent hepatocarcinoma cell adhesion. FEBS Lett. 587(6), 782–787 (2013). https://doi.org/10.1016/j.febslet.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  74. Lee, M., Lee, H.J., Seo, W.D., Park, K.H., Lee, Y.S.: Sialylation of integrin beta1 is involved in radiation-induced adhesion and migration in human colon cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 76(5), 1528–1536 (2010). https://doi.org/10.1016/j.ijrobp.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  75. Han, Y., Liu, Y., Fu, X., Zhang, Q., Huang, H., Zhang, C., Li, W., Zhang, J.: miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2,6-sialyltransferase 1. J. Physiol. Biochem. 74(3), 491–501 (2018). https://doi.org/10.1007/s13105-018-0642-0

    Article  CAS  PubMed  Google Scholar 

  76. Wang, S., Chen, X., Wei, A., Yu, X., Niang, B., Zhang, J.: alpha2,6-linked sialic acids on N-glycans modulate the adhesion of hepatocarcinoma cells to lymph nodes. Tumour Biol. 36(2), 885–892 (2015). https://doi.org/10.1007/s13277-014-2638-x

    Article  CAS  PubMed  Google Scholar 

  77. Yeung, K.T., Yang, J.: Epithelial-mesenchymal transition in tumor metastasis. Mol. Oncol. 11(1), 28–39 (2017). https://doi.org/10.1002/1878-0261.12017

    Article  PubMed  Google Scholar 

  78. Dongre, A., Weinberg, R.A.: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20(2), 69–84 (2019). https://doi.org/10.1038/s41580-018-0080-4

    Article  CAS  PubMed  Google Scholar 

  79. De Craene, B., Berx, G.: Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer. 13(2), 97–110 (2013). https://doi.org/10.1038/nrc3447

    Article  CAS  PubMed  Google Scholar 

  80. Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., Van Keymeulen, A., Brown, D., Moers, V., Lemaire, S., De Clercq, S., Minguijón, E., Balsat, C., Sokolow, Y., Dubois, C., De Cock, F., Scozzaro, S., Sopena, F., Lanas, A., D'Haene, N., Salmon, I., Marine, J.C., Voet, T., Sotiropoulou, P.A., Blanpain, C.: Identification of the tumour transition states occurring during EMT. Nature. 556(7702), 463–468 (2018). https://doi.org/10.1038/s41586-018-0040-3

    Article  CAS  PubMed  Google Scholar 

  81. Aiello, N.M., Kang, Y.: Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 216(5), 1016–1026 (2019). https://doi.org/10.1084/jem.20181827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo, J., Li, X., Tan, Z., Lu, W., Yang, G., Guan, F.: Alteration of N-glycans and expression of their related glycogenes in the epithelial-mesenchymal transition of HCV29 bladder epithelial cells. Molecules. 19(12), 20073–20090 (2014). https://doi.org/10.3390/molecules191220073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, X., Zhao, J., Ruan, Y., Sun, L., Xu, C., Jiang, H.: Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-beta1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell Death Dis. 9(11), 1102 (2018). https://doi.org/10.1038/s41419-018-1101-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aloia, A., Petrova, E., Tomiuk, S., Bissels, U., Déas, O., Saini, M., Zickgraf, F.M., Wagner, S., Spaich, S., Sütterlin, M., Schneeweiss, A., Reitberger, M., Rüberg, S., Gerstmayer, B., Agorku, D., Knöbel, S., Terranegra, A., Falleni, M., Soldati, L., Sprick, M.R., Trumpp, A., Judde, J.G., Bosio, A., Cairo, S., Hardt, O.: The sialyl-glycolipid stage-specific embryonic antigen 4 marks a subpopulation of chemotherapy-resistant breast cancer cells with mesenchymal features. Breast Cancer Res. 17(1), 146 (2015). https://doi.org/10.1186/s13058-015-0652-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu, J., Isaji, T., Im, S., Fukuda, T., Hashii, N., Takakura, D., Kawasaki, N., Gu, J.: beta-Galactoside alpha2,6-sialyltranferase 1 promotes transforming growth factor-beta-mediated epithelial-mesenchymal transition. J. Biol. Chem. 289(50), 34627–34641 (2014). https://doi.org/10.1074/jbc.M114.593392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meng, Q., Ren, C., Wang, L., Zhao, Y., Wang, S.: Knockdown of ST6Gal-I inhibits the growth and invasion of osteosarcoma MG-63 cells. Biomed. Pharmacother. 72, 172–178 (2015). https://doi.org/10.1016/j.biopha.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  87. Sarkar, T.R., Battula, V.L., Werden, S.J., Vijay, G.V., Ramirez-Peña, E.Q., Taube, J.H., Chang, J.T., Miura, N., Porter, W., Sphyris, N., Andreeff, M., Mani, S.A.: GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene. 34(23), 2958–2967 (2015). https://doi.org/10.1038/onc.2014.245

    Article  CAS  PubMed  Google Scholar 

  88. Du, J., Hong, S., Dong, L., Cheng, B., Lin, L., Zhao, B., Chen, Y.G., Chen, X.: Dynamic Sialylation in transforming growth factor-beta (TGF-beta)-induced epithelial to Mesenchymal transition. J. Biol. Chem. 290(19), 12000–12013 (2015). https://doi.org/10.1074/jbc.M115.636969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (31470799 and 31570953) and Special Fund of Dalian city for Distinguished Young Scholars (2017RJ07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deyong Yang or Shujing Wang.

Ethics declarations

Conflict of interest

The authors do not report any conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, S., Wu, Y. et al. Recent advances in understanding the roles of sialyltransferases in tumor angiogenesis and metastasis. Glycoconj J 38, 119–127 (2021). https://doi.org/10.1007/s10719-020-09967-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09967-3

Keywords

Navigation