Skip to main content
Log in

Differences in anti-inflammatory properties of water soluble and insoluble bioactive polysaccharides in lipopolysaccharide-stimulated RAW264.7 macrophages

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

β-Linked polysaccharides including β-glucans are well known to be important functional ingredients, and are known to possess immunomodulatory and anti-tumor activities. This study aimed to investigate the anti-inflammatory properties and participating receptor of water soluble and insoluble bioactive polysaccharides from Grifola frondosa (GFP, non-digestible water soluble polysaccharides), Laminaria digitata (laminarin, a water soluble β-glucan) and Saccharomyces cerevisiae (zymosan, a water insoluble β-glucan) in lipopolysaccharide (LPS)-stimulated parental and Dectin-1 highly expressing RAW264.7 macrophages. Results showed that GFP and laminarin significantly inhibited nitric oxide and prostaglandin E2 production, but only the GFP with high molecular weight exhibited strong inhibition on pro-inflammatory cytokine (TNF-α and IL-6) secretion in a concentration-dependent manner. The activation of NF-κB was also significantly down-regulated by GFP treatment as compared with cells treated with LPS alone. Although GFP and laminarin were able to bind to β-glucan receptor Dectin-1, there was no relationship between the inhibitory potency and the content of β-glucans in GFP, and these inhibitory effects were not affected by the expression level of Dectin-1 in macrophage cells. In contrast, zymosan significantly intensified LPS-induced inflammatory responses through Dectin-1. In conclusion, these results suggest that the inhibitory effects of water soluble polysaccharides on LPS-induced pro-inflammatory mediator production in murine macrophages may not involve β-glucan receptor Dectin-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Giavasis, I.: Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 26, 162–173 (2014)

    Article  CAS  Google Scholar 

  2. Su, C.H., Lai, M.N., Lin, C.C., Ng, L.T.: Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Appl. Microbiol. Biotechnol. 100, 4385–4393 (2016)

    Article  CAS  Google Scholar 

  3. Wasser, S.P.: Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60, 258–274 (2002)

    Article  CAS  Google Scholar 

  4. Nakashima, A., Yamada, K., Iwata, O., Sugimoto, R., Atsuji, K., Ogawa, T., Ishibashi-Ohgo, N., Suzuki, K.: β-Glucan in foods and its physiological functions. J. Nutr. Sci. Vitaminol. 64, 8–17 (2018)

    Article  CAS  Google Scholar 

  5. Huang, X., Nie, S.: The structure of mushroom polysaccharides and their beneficial role in health. Food Funct. 6, 3205–3217 (2015)

    Article  CAS  Google Scholar 

  6. Zhu, F., Du, B., Bian, Z., Xu, B.: Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. J. Food Compost. Anal. 41, 165–173 (2015)

    Article  CAS  Google Scholar 

  7. Ayeka, P.A.: Potential of mushroom compounds as immunomodulators in cancer immunotherapy: a review. Evid. Based Complement. Alternat. Med. 2018(7271509), 1–9 (2018)

    Article  Google Scholar 

  8. He, X., Wang, X., Fang, J., Chang, Y., Ning, N., Guo, H., Huang, L., Huang, X., Zhao, Z.: Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. Int. J. Biol. Macromol. 101, 910–921 (2017)

    Article  CAS  Google Scholar 

  9. Yang, D., Zhou, Z., Zhang, L.: An overview of fungal glycan-based therapeutics. Prog. Mol. Biol. Transl. Sci. 163, 135–163 (2019)

    Article  CAS  Google Scholar 

  10. Fang, J., Wang, Y., Lv, X., Shen, X., Ni, X., Ding, K.: Structure of a β-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-κB signaling. Glycoconj. J. 29, 365–377 (2012)

    Article  CAS  Google Scholar 

  11. Masuda, Y., Togo, T., Mizuno, S., Konishi, M., Nanba, H.: Soluble β-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway. J. Leukoc. Biol. 91, 547–556 (2012)

    Article  CAS  Google Scholar 

  12. Brown, G.D.: Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006)

    Article  CAS  Google Scholar 

  13. Takeuchi, O., Akira, S.: Pattern recognition receptors and inflammation. Cell. 140, 805–820 (2010)

    Article  CAS  Google Scholar 

  14. Brown, G.D., Gordon, S.: A new receptor for β-glucans. Nature. 413, 36–37 (2001)

    Article  CAS  Google Scholar 

  15. Ostrop, J., Lang, R.: Contact, collaboration, and conflict: signal integration of Syk-coupled C-type lectin receptors. J. Immunol. 198, 1403–1414 (2017)

    Article  CAS  Google Scholar 

  16. Kadam, S.U., Tiwari, B.K., O’Donnell, C.P.: Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Technol. 50, 24–31 (2015)

    Article  CAS  Google Scholar 

  17. Neyrinck, A.M., Mouson, A., Delzenne, N.M.: Dietary supplementation with laminarin, a fermentable marine β (1–3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. Int. Immunopharmacol. 7, 1497–1506 (2007)

    Article  CAS  Google Scholar 

  18. Di Carlo, F.J., Fiore, J.V.: On the composition of zymosan. Science. 127, 756–757 (1958)

    Article  Google Scholar 

  19. Klis, F.M., Mol, P., Hellingwerf, K., Brul, S.: Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239–256 (2002)

    Article  CAS  Google Scholar 

  20. Su, C.H., Lai, M.N., Ng, L.T.: Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food Chem. 220, 400–405 (2017)

    Article  CAS  Google Scholar 

  21. Tanaka, H., Kawai, T., Adachi, Y., Hanashima, S., Yamaguchi, Y., Ohno, N., Takahashi, T.: Synthesis of β(1,3) oligoglucans exhibiting a Dectin-1 binding affinity and their biological evaluation. Bioorg. Med. Chem. 20, 3898–3914 (2012)

    Article  CAS  Google Scholar 

  22. Brown, G.D., Herre, J., Williams, D.L., Willment, J.A., Marshall, A.S.J., Gordon, S.: Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 (2003)

    Article  CAS  Google Scholar 

  23. Berghaus, L.J., Moore, J.N., Hurley, D.J., Vandenplas, M.L., Fortes, B.P., Wolfert, M.A., Boons, G.J.: Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comp. Immunol. Microbiol. Infect. Dis. 33, 443–454 (2010)

    Article  Google Scholar 

  24. Goodridge, H.S., Reyes, C.N., Becker, C.A., Katsumoto, T.R., Ma, J., Wolf, A.J., Bose, N., Chan, A.S.H., Magee, A.S., Danielson, M.E., Weiss, A., Vasilakos, J.P., Underhill, D.M.: Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature. 472, 471–475 (2011)

    Article  CAS  Google Scholar 

  25. Steele, C., Rapaka, R.R., Metz, A., Pop, S.M., Williams, D.L., Gordon, S., Kolls, J.K., Brown, G.D.: The beta-glucan receptor Dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 1, e42 (2005)

    Article  Google Scholar 

  26. Karin, M., Greten, F.R.: NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749–759 (2005)

    Article  CAS  Google Scholar 

  27. Hishida, I., Nanba, H., Kuroda, H.: Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (maitake). Chem. Pharm. Bull. 36, 1819–1827 (1988)

    Article  CAS  Google Scholar 

  28. Vetvicka, V., Gover, O., Karpovsky, M., Hayby, H., Danay, O., Ezov, N., Hadar, Y., Schwartz, B.: Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. J. Funct. Foods. 54, 81–91 (2019)

    Article  CAS  Google Scholar 

  29. Smith, A.J., Graves, B., Child, R., Rice, P.J., Ma, Z., Lowman, D.W., Ensley, H.E., Ryter, K.T., Evans, J.T., Williams, D.L.: Immunoregulatory activity of the natural product laminarin varies widely as a result of its physical properties. J. Immunol. 200, 788–799 (2018)

    Article  CAS  Google Scholar 

  30. InvivoGen: β-Glucans: bittersweet ligands of Dectin-1. Available at https://www.invivogen.com/sites/default/files/invivogen/resources/documents/insight_201309.pdf (2013)

  31. Korhonen, R., Lahti, A., Kankaanranta, H., Moilanen, E.: Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy. 4, 471–479 (2005)

    Article  CAS  Google Scholar 

  32. Funk, C.D.: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 294, 1871–1875 (2001)

    Article  CAS  Google Scholar 

  33. Okin, D., Medzhitov, R.: Evolution of inflammatory diseases. Curr. Biol. 22, R733–R740 (2012)

    Article  CAS  Google Scholar 

  34. El Enshasy, H.A., Hatti-Kaul, R.: Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol. 31, 668–677 (2013)

    Article  Google Scholar 

  35. Du, B., Zhu, F., Xu, B.: An insight into the anti-inflammatory properties of edible and medicinal mushrooms. J. Funct. Foods. 47, 334–342 (2018)

    Article  Google Scholar 

  36. Xu, X., Yasuda, M., Nakamura-Tsuruta, S., Mizuno, M., Ashida, H.: β-Glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-α production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages. J. Biol. Chem. 287, 871–878 (2012)

    Article  CAS  Google Scholar 

  37. Ferwerda, G., Meyer-Wentrup, F., Kullberg, B.J., Netea, M.G., Adema, G.J.: Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell. Microbiol. 10, 2058–2066 (2008)

    Article  CAS  Google Scholar 

  38. Du, B., Lin, C., Bian, Z., Xu, B.: An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci. Technol. 41, 49–59 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Prof. Gordon D. Brown and Dr. Janet A. Willment for providing the parental RAW264.7 macrophages and Dectin-1 highly expressing RAW264.7 macrophages, and for their helpful guidance.

Funding

This study was supported by the Ministry of Science and Technology of Taiwan under grant number MOST 108–2313-B-002-045.

Author information

Authors and Affiliations

Authors

Contributions

C.H.S. and L.T.N. designed the study, analyzed the data and wrote the manuscript. C.H.S. performed the experiments. Y.T.T. performed Western blot experiments. K.Y.L. provided guidance on Western blotting and reviewed the related results. M.N.L. provided the mushroom samples and reviewed the study design.

Corresponding author

Correspondence to Lean-Teik Ng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Not applicable.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CH., Tseng, YT., Lo, KY. et al. Differences in anti-inflammatory properties of water soluble and insoluble bioactive polysaccharides in lipopolysaccharide-stimulated RAW264.7 macrophages. Glycoconj J 37, 565–576 (2020). https://doi.org/10.1007/s10719-020-09934-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09934-y

Keywords

Navigation