Skip to main content
Log in

Organocatalyzed preparation of 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Organocatalytic coupling of glycosyl azides with enolates of active ketones and esters through azide-enolate [3 + 2] cycloaddition in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) furnished 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives in excellent yield. The reaction condition is simple and can be scaled-up.

Coupling of glycosyl azides with active ketones through azide-enolate [3 + 2] cycloaddition in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) furnished 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives in excellent yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Hein, E.H., Fokin, V.V.: Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holub, J.M., Kirshenbaum, K.: Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition. Chem. Soc. Rev. 39, 1325–1337 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. Sletten, E.M., Bertozzi, C.R.: From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 44, 666–676 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolb, H.C., Sharpless, K.B.: The growing impact of click chemistry on drug discovery. Drug Discovery Today. 8, 1128–1137 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Wu, P., Feldman, A.K., Nugent, A.K., Hawker, C.J., Scheel, A., Voit, B., Pyun, J., Fré, J.M.J., Sharpless, K.B., Fokin, V.V.: Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper (i)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. Engl. 43, 3928–3932 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Saxon, E., Bertozzi, C.R.: Cell surface engineering by a modified Staudinger reaction. Science. 287, 2007–2010 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Lee, B.S., Lee, J.K., Kim, W.J., Jung, Y.H., Sim, S.J., Lee, J., Choi, I.S.: Surface-Initiated, Atom Transfer Radical Polymerization of Oligo(ethylene glycol) Methyl Ether Methacrylate and Subsequent Click Chemistry for Bioconjugation. Biomacromolecules. 8, 744–749 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Nandivada, H., Jiang, X., Lahann, J.: Click Chemistry: Versatility and Control in the Hands of Materials Scientists. Adv. Mater. 19, 2197–2208 (2007)

    Article  CAS  Google Scholar 

  9. Mamidyala, S.K., Finn, M.G.: In situ click chemistry: probing the binding landscapes of biological molecules. Chem. Soc. Rev. 39, 1252–1261 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Jewett, J.C., Bertozzi, C.R.: Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Astruc, D., Liang, L., Rapakousiou, A., Ruiz, J.: Click Dendrimers and Triazole-Related Aspects: Catalysts, Mechanism, Synthesis, and Functions. A Bridge between Dendritic Architectures and Nanomaterials. Acc. Chem. Res. 45, 630–640 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. Días, D.D., Rajagopal, K., Strable, E., Schneider, J., Finn, M.G.: "Click" chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 128, 6056–6057 (2006)

    Article  CAS  Google Scholar 

  13. Font, D., Bastero, A., Sayalero, S., Jimeno, C., Pericàs, M.A.: Highly Enantioselective α-Aminoxylation of Aldehydes and Ketones with a Polymer-Supported Organocatalyst. Org. Lett. 9, 1943–1946 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Debets, M.F., van Berkel, S.S., Dommerholt, J., Dirks, A.J., Rutjes, F.P.J.T., van Delft, F.L.: Bioconjugation with Strained Alkenes and Alkynes. Acc. Chem. Res. 44, 805–815 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Hong, V., Presolski, S.I., Ma, C., Finn, M.G.: Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009)

    Article  CAS  Google Scholar 

  16. 1,3-Dipolar Cycloaddition Chemistry, Padwa, A. Ed. Wiley, New York, (1984).

  17. Fan, W.-Q., Katritzky, A.R., Rees, C.W., Scriven, E.F.V.: Comprehensive Heterocyclic Chemistry II. Pergamon, Oxford (1996)

    Google Scholar 

  18. Wilkinson, B.L., Bornaghi, L.F., Poulsen, S.-A., Houston, T.A.: Synthetic utility of glycosyl triazoles in carbohydrate chemistry. Tetrahedron. 62, 8115–8125 (2006)

    Article  CAS  Google Scholar 

  19. Aragão-Leoneti, V., Campo, V.L., Gomes, A.S., Field, R.A., Carvalho, I.: Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) ‘click chemistry’ in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron. 66, 9475–9492 (2010)

    Article  CAS  Google Scholar 

  20. Amblard, F., Cho, J.H., Schinazi, R.F.: Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 109, 4207–4220 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Rocha, D.R., Santos, W.C., Lima, E.S., Ferreira, V.F.: Synthesis of 1,2,3-triazole glycoconjugates as inhibitors of α-glucosidases. Carbohydr. Res. 350, 14–19 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. dos Anjos, J.V., Neves Filho, R.A.W., do Nascimento, S.C., Srivastava, R.M., de melo, S.J., Sinou, D.: Synthesis and cytotoxic profile of glycosyl-triazole linked to 1,2,4-oxadiazole moiety at C-5 through a straight-chain carbon and oxygen atoms. Eur. J. Med. Chem. 44, 3571–3576 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Bokor, É., Docsa, T., Gergely, P., Somsák, L.: C-glucopyranosyl-1,2,4-triazoles as new potent inhibitors of glycogen phosphorylase. ACS Med. Chem. Lett. 4, 612–615 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilkinson, B.L., Bornaghi, L.F., Houston, T.A., Innocenti, A., Vullo, D., Supuran, C.T., Poulsen, S.-A.: Carbonic Anhydrase Inhibitors: Inhibition of Isozymes I, II, and IX with Triazole-Linked O-Glycosides of Benzene Sulfonamides. J. Med. Chem. 50, 1651–1657 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn, H., Gutelius, D., Black, E., Nadolny, C., Basu, A., Reid, C.: Anti-bacterial glycosyl triazoles – identification of an N-acetylglucosamine derivative with bacteriostatic activity against Bacillus. Medchemcomm. 5, 1213–1217 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carvalho, I., Andrade, P., Campo, V.L., Guedes, P.M., Sesti-Costa, R., Silva, J.S., Schenkman, S., Dedola, S., Hill, L., Rejzek, M., Nepogodiev, S.A., Field, R.A.: 'Click chemistry' synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem. 18, 2412–2427 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. Wilkinson, B.L., Long, H., Sim, E., Fairbanks, A.J.: Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioor. Med. Chem. Lett. 18, 6265–6267 (2008)

    Article  CAS  Google Scholar 

  28. Tonks, N.K.: Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833–846 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. He, X.-P., Xie, J., Tang, Y., Li, J., Chen, G.-R.: CuAAC Click Chemistry Accelerates the Discovery of Novel Chemical Scaffolds as Promising Protein Tyrosine Phosphatases Inhibitors. Curr. Med. Chem. 19, 2399–2405 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tiwari, V.K., Mishra, B.B., Mishra, K.B., Mishra, N., Singh, A.S., Chen, X.: Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem. Rev. 116, 3086–3240 (2016)

    Article  CAS  Google Scholar 

  31. He, X.-P., Zeng, Y.-L., Zang, Y., Li, J., Field, R.A., Chen, G.-R.: Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 429, 1–22 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. Shashank, A.B., Karthik, S., Madhavachary, R., Ramachary, D.B.: An Enolate-Mediated Organocatalytic Azide–Ketone [3+2]-Cycloaddition Reaction: Regioselective High-Yielding Synthesis of Fully Decorated 1,2,3-Triazoles. Chem. Eur. J. 20, 16877–16881 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Singh, H., Sindhu, J., Khurana, J.M.: Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU–H2O catalytic system. RSC Adv. 3, 22360–22366 (2013)

    Article  CAS  Google Scholar 

  34. Kamalraj, V.R., Senthil, S., Kannan, P.: One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers. J. Mol. Struc. 892, 210–215 (2008)

    Article  CAS  Google Scholar 

  35. John, J., Thomas, J., Dehaen, W.: Organocatalytic routes toward substituted 1,2,3-triazoles. Chem. Commun. 51, 10797–10806 (2015)

    Article  CAS  Google Scholar 

  36. Ramasastry, S.S.: Enamine/enolate-mediated organocatalytic azide-carbonyl [3+2] cycloaddition reactions for the synthesis of densely functionalized 1,2,3-triazoles. Angew. Chem. Int. Ed. Engl. 53, 14310–14312 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. Jin, G., Zhang, J., Fu, D., Wu, J., Cao, S.: One-Pot, Three-Component Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Starting from Primary Alcohols. Eur. J. Org. Chem. 5446–5449 (2012)

  38. González-Calderón, D., Aguirre-De Paz, J.G., González- González, C.A., Fuentes-Benites, A., González-Romero, C.: A straightforward and versatile approach to the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from alkyl halides via a one-pot, three-component reaction. Tetrahedron Lett. 56, 1713–1715 (2015)

    Article  CAS  Google Scholar 

  39. Da Silva, F.C., De Souza, M.C.B.V., Frugulhetti, I.I.P., Castro, H.C., Souza, S.L., DeSouza, T.M.L., Rodrigues, D.Q., Souza, A.M.T., Abreu, P.A., Passamani, F., Rodrigues, C.R., Ferreira, V.F.: Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem. 44, 373–383 (2009)

    Article  CAS  Google Scholar 

  40. Kumar, R., Maulik, P.R., Misra, A.K.: Significant rate accelerated synthesis of glycosyl azides and glycosyl 1,2,3-triazole conjugates. Glycoconj. J. 25, 595–602 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.K. and I.B. thank CSIR, New Delhi for providing senior research fellowships. This work was supported by SERB, New Delhi (Project No. EMR/2015/000282) (AKM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Misra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 10142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, M., Bhaumik, I. & Misra, A.K. Organocatalyzed preparation of 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives. Glycoconj J 36, 439–450 (2019). https://doi.org/10.1007/s10719-019-09883-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09883-1

Keywords

Navigation