Skip to main content
Log in

Detection and characterization of bacterial polysaccharides in drug-resistant enterococci

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Enterococcus faecium (E. faecium) has emerged as one of today’s leading causes of health care-associated infections that is difficult to treat with the available antibiotics. These pathogens produce capsular polysaccharides on the cell surface which play a significant role in adhesion, virulence and evasion. Therefore, we aimed at the identification and characterization of bacterial polysaccharide antigens which are central for the development of vaccine-based prophylactic approaches. The crude cell wall-associated polysaccharides from E. faecium, its mutant and complemented strains were purified and analyzed by a primary antibody raised against lipoteichoic acid (LTA) and diheteroglycan (DHG). The resistant E. faecium strains presumably possess novel capsular polysaccharides that allow them to avoid the evasion from opsonic killing. The E. faecium U0317 strain was very well opsonized by anti-U0317 (~95%), an antibody against the whole bacterial cell. The deletion mutant showed a significantly increased susceptibility to opsonophagocytic killing (90–95%) against the penicillin binding protein (anti-PBP-5). By comparison, in a mouse urinary tract and rat endocarditis infection model, respectively, there were no significant differences in virulence. In this study we explored the biological role of the capsule of E. faecium. Our findings showed that the U0317 strain is not only sensitive to anti-LTA but also to antibodies against other enterococcal surface proteins. Our findings demonstrate that polysaccharides capsule mediated-resistance to opsonophagocytosis. We also found that the capsular polysaccharides do not play an important role in bacterial virulence in urinary tract and infective endocarditis in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CPS :

Capsular polysaccharides

CFU :

Colony-forming unit

DHG :

Diheteroglycan

E. faecium :

Enterococcus faecium

LTA :

Lipoteichoic Acid

OPA :

Opsonophagocytic Assays

PBP :

Penicillin Binding Protein-5

UTI :

Urinary Tract Infection

VRE :

Vancomycin-Resistant Enterococci

Wt :

Wild-type

References

  1. Costerton, J.W., Irvin, R.T., Cheng, K.J.: The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35, 299–324 (1981)

    Article  CAS  PubMed  Google Scholar 

  2. Micoli, F., Costantino, P., Adamo, R.: Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol. Rev. 42, 388–423 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whitfield, C., Valvano, M.A.: Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv. Microb. Physiol. 35, 135–246 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. Boulnois, G.J., Roberts, I.S.: Genetics of capsular polysaccharide production in bacteria. Curr. Top. Microbiol. Immunol. 150, 1–18 (1990)

    CAS  PubMed  Google Scholar 

  5. O’Riordan, K., Lee, J.C.: Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218–234 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kadioglu, A., Weiser, J.N., Paton, J.C., Andrew, P.W.: The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6, 288–301 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Enterococci: From commensals to leading causes of drug resistant infection - PubMed - NCBI, (2014)

  8. Thurlow, L.R., Thomas, V.C., Hancock, L.E.: Capsular polysaccharide production in Enterococcus faecalis and contribution of CpsF to capsule serospecificity. J. Bacteriol. 191, 6203–6210 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McBride, S.M., Fischetti, V.A., Leblanc, D.J., Moellering, R.C., Gilmore, M.S.: Genetic diversity among Enterococcus faecalis. PLoS One. 2, e582 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thurlow, L.R., Thomas, V.C., Fleming, S.D., Hancock, L.E.: Enterococcus faecalis capsular polysaccharide serotypes C and D and their contributions to host innate immune evasion. Infect. Immun. 77, 5551–5557 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ali, L., Spiess, M., Wobser, D., Rodriguez, M., Blum, H.E., Sakιnç, T.: Identification and functional characterization of the putative polysaccharide biosynthesis protein (CapD) of Enterococcus faecium U0317. Infect. Genet. Evol. 37, 215–224 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. Bentley, S.D., Aanensen, D.M., Mavroidi, A., Saunders, D., Rabbinowitsch, E., Collins, M., Donohoe, K., Harris, D., Murphy, L., Quail, M.A., Samuel, G., Skovsted, I.C., Kaltoft, M.S., Barrell, B., Reeves, P.R., Parkhill, J., Spratt, B.G.: Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2, e31 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan, Y.-J., Lin, T.-L., Chen, C.-T., Chen, Y.-Y., Hsieh, P.-F., Hsu, C.-R., Wu, M.-C., Wang, J.-T.: Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci. Rep. 5, 15573 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palmer, K.L., Godfrey, P., Griggs, A., Kos, V.N., Zucker, J., Desjardins, C., Cerqueira, G., Gevers, D., Walker, S., Wortman, J., Feldgarden, M., Haas, B., Birren, B., Gilmore, M.S.: Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio. 3, e00318–e00311 (2012)

    PubMed  PubMed Central  Google Scholar 

  15. Huebner, J., Wang, Y., Krueger, W.A., Madoff, L.C., Martirosian, G., Boisot, S., Goldmann, D.A., Kasper, D.L., Tzianabos, A.O., Pier, G.B.: Isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Infect. Immun. 67, 1213–1219 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Theilacker, C., Kaczynski, Z., Kropec, A., Fabretti, F., Sange, T., Holst, O., Huebner, J.: Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect. Immun. 74, 5703–5712 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Theilacker, C., Kaczyński, Z., Kropec, A., Sava, I., Ye, L., Bychowska, A., Holst, O., Huebner, J.: Serodiversity of opsonic antibodies against Enterococcus faecalis--glycans of the cell wall revisited. PLoS One. 6, e17839 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin, X., Galloway-Peña, J.R., Sillanpaa, J., Roh, J.H., Nallapareddy, S.R., Chowdhury, S., Bourgogne, A., Choudhury, T., Muzny, D.M., Buhay, C.J., Ding, Y., Dugan-Rocha, S., Liu, W., Kovar, C., Sodergren, E., Highlander, S., Petrosino, J.F., Worley, K.C., Gibbs, R.A., Weinstock, G.M., Murray, B.E.: Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol. 12, 135 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laverde, D., Wobser, D., Romero-Saavedra, F., Hogendorf, W., van der Marel, G., Berthold, M., Kropec, A., Codee, J., Huebner, J.: Synthetic teichoic acid conjugate vaccine against nosocomial gram-positive bacteria. PLoS One. 9, e110953 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kodali, S., Vinogradov, E., Lin, F., Khoury, N., Hao, L., Pavliak, V., Jones, C.H., Laverde, D., Huebner, J., Jansen, K.U., Anderson, A.S., Donald, R.G.K.: A vaccine approach for the prevention of infections by multidrug-resistant Enterococcus faecium. J. Biol. Chem. 290, 19512–19526 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Schaik, W., Top, J., Riley, D.R., Boekhorst, J., Vrijenhoek, J.E.P., Schapendonk, C.M.E., Hendrickx, A.P.A., Nijman, I.J., Bonten, M.J.M., Tettelin, H., Willems, R.J.L.: Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics. 11, 239 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turula, V.E., Gore, T., Singh, S., Arumugham, R.G.: Automation of the anthrone assay for carbohydrate concentration determinations. Anal. Chem. 82, 1786–1792 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Dische, Z., Shettles, L.B.: A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J. Biol. Chem. 175, 595–603 (1948)

    CAS  PubMed  Google Scholar 

  24. Lowry, O.H., Roberts, N.R., WU, M.L., Hixon, W.S., Crawford, E.J.: The quantitative histochemistry of brain. II. Enzyme measurements. J. Biol. Chem. 207, 19–37 (1954)

    CAS  PubMed  Google Scholar 

  25. Kropec, A., Sava, I.G., Vonend, C., Sakinc, T., Grohmann, E., Huebner, J.: Identification of SagA as a novel vaccine target for the prevention of Enterococcus faecium infections. Microbiology. 157, 3429–3434 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Haller, C., Berthold, M., Wobser, D., Kropec, A., Lauriola, M., Schlensak, C., Huebner, J.: Cell-wall glycolipid mutations and their effects on virulence of E. faecalis in a rat model of infective endocarditis. PLoS One. 9, e91863 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gründling, A., Schneewind, O.: Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bacteriol. 189, 2521–2530 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Romero-Saavedra, F., Laverde, D., Wobser, D., Michaux, C., Budin-Verneuil, A., Bernay, B., Benachour, A., Hartke, A., Huebner, J.: Identification of peptidoglycan-associated proteins as vaccine candidates for enterococcal infections. PLoS One. 9, e111880 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sava, I.G., Heikens, E., Huebner, J.: Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 16, 533–540 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Wobser, D., Ali, L., Grohmann, E., Huebner, J., Sakinc, T.: A novel role for D-alanylation of lipoteichoic acid of enterococcus faecalis in urinary tract infection. PLoS One. 9, e107827 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Theilacker, C., Sanchez-Carballo, P., Toma, I., Fabretti, F., Sava, I., Kropec, A., Holst, O., Huebner, J.: Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol. Microbiol. 71, 1055–1069 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Diederich, A.-K., Wobser, D., Spiess, M., Sava, I.G., Huebner, J., Sakιnç, T.: Role of glycolipids in the pathogenesis of Enterococcus faecalis urinary tract infection. PLoS One. 9, e96295 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paganelli, F.L., Huebner, J., Singh, K.V., Zhang, X., van Schaik, W., Wobser, D., Braat, J.C., Murray, B.E., Bonten, M.J.M., Willems, R.J.L., Leavis, H.L.: Genome-wide screening identifies phosphotransferase system permease BepA to be involved in Enterococcus faecium endocarditis and biofilm formation. J. Infect. Dis. 214, 189–195 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. Fabretti, F., Theilacker, C., Baldassarri, L., Kaczynski, Z., Kropec, A., Holst, O., Huebner, J.: Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect. Immun. 74, 4164–4171 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weidenmaier, C., Peschel, A., Xiong, Y.-Q., Kristian, S.A., Dietz, K., Yeaman, M.R., Bayer, A.S.: Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J. Infect. Dis. 191, 1771–1777 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Neuhaus, F.C., Baddiley, J.: A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 686–723 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morath, S., Stadelmaier, A., Geyer, A., Schmidt, R.R., Hartung, T.: Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J. Exp. Med. 195, 1635–1640 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weintraub, A.: Immunology of bacterial polysaccharide antigens. Carbohydr. Res. 338, 2539–2547 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Ada, G.: Vaccines and vaccination. N. Engl. J. Med. 345, 1042–1053 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Weidenmaier, C., Peschel, A.: Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nat. Rev. Microbiol. 6, 276–287 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Roberts, I.S.: The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50, 285–315 (1996)

    Article  CAS  PubMed  Google Scholar 

  42. Roy, D., Auger, J.-P., Segura, M., Fittipaldi, N., Takamatsu, D., Okura, M., Gottschalk, M.: Role of the capsular polysaccharide as a virulence factor for Streptococcus suis serotype 14. Can. J. Vet. Res. 79, 141–146 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Geiss-Liebisch, S., Rooijakkers, S.H.M., Beczala, A., Sanchez-Carballo, P., Kruszynska, K., Repp, C., Sakinc, T., Vinogradov, E., Holst, O., Huebner, J., Theilacker, C.: Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose-binding lectin. J. Biol. Chem. 287, 37769–37777 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thurman, J.M., Holers, V.M.: The central role of the alternative complement pathway in human disease. J. Immunol. 176, 1305–1310 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. Kleine, B., Ali, L., Wobser, D., Sakιnç, T.: The N-terminal repeat and the ligand binding domain a of SdrI protein is involved in hydrophobicity of S. saprophyticus. Microbiol. Res. 172, 88–94 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Nicolle, L.E.: Catheter associated urinary tract infections. Antimicrob Resist Infect Control. 3(23), (2014)

  47. Shokoohizadeh, L., Mobarez, A.M., Zali, M.R., Ranjbar, R., Alebouyeh, M., Sakinc, T., Ali, L.: High frequency distribution of heterogeneous vancomycin resistant Enterococcous faecium (VREfm) in Iranian hospitals. Diagn. Pathol. 8(902), (2013)

  48. Shankar, N., Lockatell, C.V., Baghdayan, A.S., Drachenberg, C., Gilmore, M.S., Johnson, D.E.: Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 69, 4366–4372 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kau, A.L., Martin, S.M., Lyon, W., Hayes, E., Caparon, M.G., Hultgren, S.J.: Enterococcus faecalis tropism for the kidneys in the urinary tract of C57BL/6J mice. Infect. Immun. 73, 2461–2468 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, A., Athan, E., Pappas, P.A., Fowler, V.G., Olaison, L., Paré, C., Almirante, B., Muñoz, P., Rizzi, M., Naber, C., Logar, M., Tattevin, P., Iarussi, D.L., Selton-Suty, C., Jones, S.B., Casabé, J., Morris, A., Corey, G.R., Cabell, C.H.: International collaboration on endocarditis-prospective cohort study investigators: contemporary clinical profile and outcome of prosthetic valve endocarditis. JAMA. 297, 1354–1361 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. Donlan, R.M., Costerton, J.W.: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

LA sincerely thanks the Deutscher Akademischer AustauschDienst (DAAD) for the award of a PhD fellowship and Dominique Wobser for help with the animal experiments.

Funding

This work was supported by grants from the German Ministry of Science and Education (BMBF: UroGenOmics0315833C).

Author information

Authors and Affiliations

Authors

Contributions

LA and TS conceived and designed the study. LA analyzed the data and drafted the manuscript. HEB critically reviewed the manuscript. All the authors studied and approved the final manuscript.

Corresponding author

Correspondence to Liaqat Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All animal experiments were performed in compliance with the German animal protection law (TierSchG). The mice were housed and handled following good animal practice as defined by FELASA and the national animal welfare body GV-SOLAS. The animal welfare committees of the University of Freiburg (Regierungspräsidium Freiburg Az 35/9185.81/G-11/118 and Az 35/9185.81/G-12/070) approved all animal experiments.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L., Blum, H.E. & Sakιnç, T. Detection and characterization of bacterial polysaccharides in drug-resistant enterococci. Glycoconj J 36, 429–438 (2019). https://doi.org/10.1007/s10719-019-09881-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09881-3

Keywords

Navigation