Enzymatic synthesis of β-galactosyl fucose using recombinant bifidobacterial β-galactosidase and its prebiotic effect


Breast-fed infants have Bifidobacterium-rich gut microbiota compared to infants fed formula. Fucosylated oligosaccharides are the major components of human milk oligosaccharide (HMO) which confer various beneficial effects including prebiotic effect and protection from pathogenic infection on the host. A novel prebiotics was developed using bifidobacterial β-galactosidase and fucose and lactose as substrates. Structure analysis revealed it as β-D-galactopyranosyl-(1 → 3)-O-L-fucopyranose named as β-galactosyl fucose (gal-fuc), which is different from common fucosylated HMOs with α1–2, α1–3, and α1–4 linkages. Among the four Lactobacillus strains examined, all but L. delbrueckii subsp. bilgaricus KCTC 3635 grew better on gal-fuc than on β-GOS. Among the 11 bifidobacterial species examined, all except for B. bifium used gal-fuc as much as GOS. Moreover, the gal-fuc was noticeably better used by Bifidobacterium infantis, the major intestinal bacteria of breast fed infant. Among 15 non-probiotic bacteria, only 4 strains used gal-fuc better than β-GOS. In conclusion, a novel gal-fuc is expected to contribute to beneficial changes of gut microbiota.

A novel form of β-galactosyl fucose with an improved prebiotic effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Yu, Z.-T., Chen, C., Kling, D.E., Liu, B., McCoy, J.M., Merighi, M., Heidtman, M., Newburg, D.S.: The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology. 23(2), 169–177 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Oozeer, R., van Limpt, K., Ludwig, T., Amor, K.B., Martin, R., Wind, R.D., Boehm, G., Knol, J.: Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human-milk oligosaccharides. Am. J. Clin. Nutr. 98(2), 561S–571S (2013)

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Barile, D., Rastall, R.A.: Human milk and related oligosaccharides as prebiotics. Curr. Opin. Biotechnol. 24(2), 214–219 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Marcobal, A., Barboza, M., Froehlich, J.W., Block, D.E., German, J.B., Lebrilla, C.B., Mills, D.A.: Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58(9), 5334–5340 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ashida, H., Miyake, A., Kiyohara, M., Wada, J., Yoshida, E., Kumagai, H., Katayama, T., Yamamoto, K.: Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 19(9), 1010–1017 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Mackie, R.I., Sghir, A., Gaskins, H.R.: Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69(5), 1035s–1045s (1999)

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Radke, M., Picaud, J.-C., Loui, A., Cambonie, G., Faas, D., Lafeber, H.N., de Groot, N., Pecquet, S.S., Steenhout, P.G., Hascoet, J.-M.: Starter formula enriched in prebiotics and probiotics ensures normal growth of infants and promotes gut health: a randomized clinical trial. Pediatr. Res. 81(4), 622–631 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Lam, K.-L., Cheung, P.C.-K.: Non-digestible long chain beta-glucans as novel prebiotics. Bioactive carbohydrates and dietary fibre. 2(1), 45–64 (2013)

    Article  CAS  Google Scholar 

  9. 9.

    Costalos, C., Kapiki, A., Apostolou, M., Papathoma, E.: The effect of a prebiotic supplemented formula on growth and stool microbiology of term infants. Early Hum. Dev. 84(1), 45–49 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Moro, G., Minoli, I., Mosca, M., Fanaro, S., Jelinek, J., Stahl, B., Boehm, G.: Dosage-related bifidogenic effects of galacto-and fructooligosaccharides in formula-fed term infants. J. Pediatr. Gastroenterol. Nutr. 34(3), 291–295 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Vos, A.P., Haarman, M., Buco, A., Govers, M., Knol, J., Garssen, J., Stahl, B., Boehm, G., M'rabet, L.: A specific prebiotic oligosaccharide mixture stimulates delayed-type hypersensitivity in a murine influenza vaccination model. Int. Immunopharmacol. 6(8), 1277–1286 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Arslanoglu, S., Moro, G.E., Boehm, G.: Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J. Nutr. 137(11), 2420–2424 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Moro, G., Arslanoglu, S., Stahl, B., Jelinek, J., Wahn, U., Boehm, G.: A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 91(10), 814–819 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    German, J., Freeman, S., Lebrilla, C., Mills, D.: Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. In: Personalized Nutrition for the Diverse Needs of Infants and Children, vol. 62, pp. 205–222. Karger Publishers (2008)

  15. 15.

    Bode, L.: Recent advances on structure, metabolism, and function of human milk oligosaccharides. J. Nutr. 136(8), 2127–2130 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Yu, Z.-T., Chen, C., Newburg, D.S.: Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 23(11), 1281–1292 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tao, N., DePeters, E., Freeman, S., German, J.B., Grimm, R., Lebrilla, C.B.: Bovine milk glycome. J. Dairy Sci. 91(10), 3768–3778 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Newburg, D.S., Ruiz-Palacios, G.M., Morrow, A.L.: Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 25, 37–58 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Ma, B., Simala-Grant, J.L., Taylor, D.E.: Fucosylation in prokaryotes and eukaryotes. Glycobiology. 16(12), 158R–184R (2006)

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Murata, T., Morimoto, S., Zeng, X., Watanabe, S., Usui, T.: Enzymatic synthesis of α-l-fucosyl-N-acetyllactosamines and 3′-O-α-l-fucosyllactose utilizing α-l-fucosidases. Carbohydr. Res. 320(3), 192–199 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Usvalampi, A., Maaheimo, H., Tossavainen, O., Frey, A.D.: Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures. Glycoconj. J. 35(1), 31–40 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Pickard, J.M., Chervonsky, A.V.: Intestinal fucose as a mediator of host–microbe symbiosis. J. Immunol. 194(12), 5588–5593 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Prudden, A.R., Liu, L., Capicciotti, C.J., Wolfert, M.A., Wang, S., Gao, Z., Meng, L., Moremen, K.W., Boons, G.-J.: Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl. Acad. Sci. 114(27), 6954–6959 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Seeberger, P.H.: Automated carbohydrate synthesis to drive chemical glycomics. Chem. Commun. (10), 1115–1121 (2003)

  25. 25.

    Chen, W., Chen, H., Xia, Y., Zhao, J., Tian, F., Zhang, H.: Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J. Dairy Sci. 91(5), 1751–1758 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Oh, S., Youn, S., Park, M., Kim, H., Baek, N., Li, Z., Ji, G.: Synthesis of β-galactooligosaccharide using bifidobacterial β-galactosidase purified from recombinant Escherichia coli. J. Microbiol. Biotechnol. (2017)

  27. 27.

    Vigsnaes, L.K., Nakai, H., Hemmingsen, L., Andersen, J.M., Lahtinen, S.J., Rasmussen, L.E., Hachem, M.A., Petersen, B.O., Duus, J.Ø., Meyer, A.S.: In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Food Funct. 4(5), 784–793 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Candela, M., Seibold, G., Vitali, B., Lachenmaier, S., Eikmanns, B.J., Brigidi, P.: Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res. Microbiol. 156(8), 887–895 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Coppa, G.V., Zampini, L., Galeazzi, T., Facinelli, B., Ferrante, L., Capretti, R., Orazio, G.: Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 59(3), 377–382 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Fuller, Z., Louis, P., Mihajlovski, A., Rungapamestry, V., Ratcliffe, B., Duncan, A.J.J.B.J.o.N.: Influence of cabbage processing methods and prebiotic manipulationof colonic microflora on glucosinolate breakdown in man. 98(2), 364–372 (2007)

  31. 31.

    Bode, L., Jantscher-Krenn, E.: Structure-function relationships of human milk oligosaccharides. Advances in Nutrition: An International Review Journal. 3(3), 383S–391S (2012)

    Article  CAS  Google Scholar 

  32. 32.

    Zivkovic, A.M., German, J.B., Lebrilla, C.B., Mills, D.A.: Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. 108(Supplement 1, 4653–4658 (2011)

    Article  PubMed  Google Scholar 

  33. 33.

    Xiao, Z., Guo, Y., Liu, Y., Li, L., Zhang, Q., Wen, L., Wang, X., Kondengaden, S.M., Wu, Z., Zhou, J.: Chemoenzymatic synthesis of a library of human milk oligosaccharides. The Journal of organic chemistry. 81(14), 5851–5865 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ninonuevo, M.R., Park, Y., Yin, H., Zhang, J., Ward, R.E., Clowers, B.H., German, J.B., Freeman, S.L., Killeen, K., Grimm, R.: A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54(20), 7471–7480 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Ajisaka, K., Shirakabe, M.: Regioselective synthesis of α-L-fucosyl-containing disaccharides by use of α-L-fucosidases of various origins. Carbohydr. Res. 224, 291–299 (1992)

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    LoCascio, R.G., Niñonuevo, M.R., Kronewitter, S.R., Freeman, S.L., German, J.B., Lebrilla, C.B., Mills, D.A.: A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2(3), 333–342 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Asakuma, S., Hatakeyama, E., Urashima, T., Yoshida, E., Katayama, T., Yamamoto, K., Kumagai, H., Ashida, H., Hirose, J., Kitaoka, M.: Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 286(40), 34583–34592 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bode, L.: Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 22(9), 1147–1162 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Behnsen, J., Deriu, E., Sassone-Corsi, M., Raffatellu, M.: Probiotics: properties, examples, and specific applications. Cold Spring Harbor perspectives in medicine. 3(3), a010074 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ruiz-Palacios, G.M., Cervantes, L.E., Ramos, P., Chavez-Munguia, B., Newburg, D.S.: Campylobacter jejuni binds intestinal H (O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278(16), 14112–14120 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Newburg, D.S.: Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J. Anim. Sci. 87(13_suppl), 26–34 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references


This work was carried out with support from the National Research Foundation of Korea (NRF) grant (No. 2017R1A2B2012390) funded by the Korea government (MSIP), High Value-added Food Technology Development Program (No. 317043-3), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET), Ministry of Agriculture, Food and Rural Affairs (MAFRA), and the Technological Innovation R&D Program (No. S2463318) funded by the Small and Medium Business Administration, Republic of Korea.

Author information



Corresponding author

Correspondence to Geun-Eog Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, SY., Park, MS., Lee, YG. et al. Enzymatic synthesis of β-galactosyl fucose using recombinant bifidobacterial β-galactosidase and its prebiotic effect. Glycoconj J 36, 199–209 (2019). https://doi.org/10.1007/s10719-019-09871-5

Download citation


  • β-Galactosyl fucose
  • Bifidobacterium longum subsp. longum RD 47
  • Human milk oligosaccharide
  • Prebiotics
  • β-Galactosidase