Skip to main content
Log in

Let’s talk about sexes: sex-related N-glycosylation in ecologically important invertebrates

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Parasitic helminths and pest insects are organisms with great ecological importance, having direct or indirect detrimental effects on people’s lives worldwide. Several reports in literature indicate that the glycan repertoire of parasites plays important roles in host-parasite interactions and modulation and evasion of the host immune system, while insect glycans are essential for their survival, growth and development. Although glycosylation is the result of a highly conserved machinery, differences between species and between different stages of one organism’s life cycle occur. This review provides insight into recent glycomics studies both for helminths and insects, focussing on sex differences and the role of carbohydrate structures in reproduction. Information on the differential N-glycosylation process between males and females can generate a better understanding of the biology and physiology of these economic important organisms, and can contribute to the discovery of novel anti-fecundity vaccine candidates and drug targets, as well as in the elaboration of innovative pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. van Die, I., Cummings, R.D.: Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology. 20, 2–12 (2010)

    PubMed  Google Scholar 

  2. Jiménez-Castells, C., Vanbeselaere, J., Kohlhuber, S., Ruttkowski, B., Joachim, A., Paschinger, K.: Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochim. Biophys. Acta Gen. Subj. (2016). https://doi.org/10.1016/j.bbagen.2016.10.011

    Google Scholar 

  3. Ghosh, S.: Sialylation and sialyltransferase in insects. Glycoconj. J. 35, 433–441 (2018)

    CAS  PubMed  Google Scholar 

  4. Hokke, C.H., van Diepen, A.: Helminth glycomics – glycan repertoires and host-parasite interactions. Mol. Biochem. Parasitol. 215, 47–57 (2016)

    PubMed  Google Scholar 

  5. Walski, T., De Schutter, K., Van Damme, E.J.M., Smagghe, G.: Diversity and functions of protein glycosylation in insects. Insect Biochem. Mol. Biol. (2017). https://doi.org/10.1016/j.ibmb.2017.02.005

    CAS  PubMed  Google Scholar 

  6. Prasanphanich, N.S., Mickum, M.L., Heimburg-Molinaro, J., Cummings, R.D.: Glycoconjugates in host-helminth interactions. Front. Immunol. (2013). https://doi.org/10.3389/fimmu.2013.00240

  7. Schiller, B., Hykollari, A., Yan, S., Paschinger, K., Wilson, I.B.H.: Complicated N-linked glycans in simple organisms. Biol. Chem. 393, 661–673 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Walski, T., Van Damme, E.J.M., Smargiasso, N., Christiaens, O., De Pauw, E., Smagghe, G.: Protein N-glycosylation and N-glycan trimming are required for postembryonic development of the pest beetle Tribolium castaneum. Sci. Rep. (2016). https://doi.org/10.1038/srep35151

  9. Katoh, T., Tiemeyer, M.: The N’s and O’s of Drosophila glycoprotein glycobiology. Glycoconj. J. 30, 57–66 (2013)

    CAS  PubMed  Google Scholar 

  10. North, S.J., Koles, K., Hembd, C., Morris, H.R., Dell, A., Panin, V.M., Haslam, S.M.: Glycomic studies of Drosophila melanogaster embryos. Glycoconj. J. 23, 345–354 (2006)

    CAS  PubMed  Google Scholar 

  11. Fabini, G., Freilinger, A., Altmann, F., Wilson, I.B.: Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. J. Biol. Chem. 276, 28058–28067 (2001)

    CAS  PubMed  Google Scholar 

  12. Rendić, D., Sharrow, M., Katoh, T., Overcarsh, B., Nguyen, K., Kapurch, J., Aoki, K., Wilson, I.B.H., Tiemeyer, M.: Neural-specific α3-fucosylation of N-linked glycans in the Drosophila embryo requires fucosyltransferase A and influences developmental signaling associated with O-glycosylation. Glycobiology. 20, 1353–1365 (2010)

    PubMed  PubMed Central  Google Scholar 

  13. Wuhrer, M., Koeleman, C.A.M., Fitzpatrick, J.M., Hoffman, K.F., Deelder, A.M., Hokke, C.H.: Gender-specific expression of complex-type N-glycans in schistosomes. Glycobiology. 16, 991–1006 (2006)

    CAS  PubMed  Google Scholar 

  14. Kim, B., Suo, B., Emmons, S.W.: Gene function prediction based on developmental transcriptomes of the two sexes in C. elegans. Cell Rep. 17, 917–928 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Loukas, A., Mullin, N.P., Tetteh, K.K.A., Moens, L., Maizels, R.M.: A novel C-type lectin secreted by a tissue-dwelling parasitic nematode. Curr. Biol. 9, 825–828 (1999)

    CAS  PubMed  Google Scholar 

  16. Loukas, A., Maizels, R.M.: Helminth C-type lectins and host-parasite interactions. Parasitol. Today. 16, 333–339 (2000)

    CAS  PubMed  Google Scholar 

  17. Brown, A.C., Harrison, L.M., Kapulkin, W., Jones, B.F., Sinha, A., Savage, A., Villalon, N., Cappello, M.: Molecular cloning and characterization of a C-type lectin from Ancylostoma ceylanicum: evidence for a role in hookworm reproductive physiology. Mol. Biochem. Parasitol. 151, 141–147 (2007)

    CAS  PubMed  Google Scholar 

  18. Vanbeselaere, J., Yan, S., Joachim, A., Paschinger, K., Wilson, I.B.H.: The parasitic nematode Oesophagostomum dentatum synthesizes unusual glycosaminoglycan-like O-glycans. Glycobiology. 28, 474–481 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Martini, F., Eckmair, B., Štefanić, S., Jin, C., Garg, M., Yan, S., Jiménez-Castells, C., Hykollari, A., Neupert, C., Venco, L., Silva, D.V., Wilson, I.B.H., Paschinger, K.: Highly modified and immunoactive N-glycans of the canine heartworm. Nat. Commun. (2019). https://doi.org/10.1038/s41467-018-07948-7

  20. Cai, P., Liu, S., Piao, X., Hou, N., Gobert, G.N., McManus, D.P., Chen, Q.: Comprehensive transcriptome analysis of sex-biased expressed genes reveals discrete biological and physiological features of male and female Schistosoma japonicum. PLoS Negl. Trop. Dis. (2016). https://doi.org/10.1371/journal.pntd.0004684

    PubMed  PubMed Central  Google Scholar 

  21. Hokke, C.H., Fitzpatrick, J.M., Hoffman, K.F.: Integrating transcriptome, proteome and glycome analyses of Schistosoma biology. Trends Parasitol. (2007). https://doi.org/10.1016/j.pt.2007.02.007

    CAS  PubMed  Google Scholar 

  22. Fitzpatrick, J.M., Johnston, D.A., Williams, G.W., Williams, D.J., Freeman, T.C., Dunne, D.W., Hoffmann, K.F.: An oligonucleotide microarray for transcriptome analysis of Schistosoma mansoni and its application/use to investigate gender-associated gene expression. Mol. Biochem. Parasitol. 141, 1–13 (2005)

    CAS  PubMed  Google Scholar 

  23. Liu, F., Lu, J., Hu, W., Wang, S., Cui, S., Chi, M., Yan, Q., Wang, X., Song, H., Xu, X., Wang, J., Zhang, X., Zhang, X., Wang, Z., Xue, C., Brindley, P.J., McManus, D.P., Yang, P., Feng, Z., Chen, Z., Han, Z.: New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analysis of Schistosoma japonicum. PLoS Pathog. (2006). https://doi.org/10.1371/journal.ppat.0020029

    PubMed  PubMed Central  Google Scholar 

  24. Zhang, M., Hong, Y., Han, Y., Han, H., Peng, J., Qiu, C., Yang, J., Lu, K., Fu, Z., Lin, J.: Proteomic analysis of tegument-exposed proteins of female and male Schistosoma japonicum worms. J. Proteome Res. 12, 5260–5270 (2013)

    CAS  PubMed  Google Scholar 

  25. Khoo, K., Chatterjee, D., Caulfield, J.P., Morris, H.R., Dell, A.: Structural mapping of the glycans from the egg glycoproteins of Schistosoma mansoni and Schistosoma japonicum: identification of novel core structures and terminal sequences. Glycobiology. 7, 663–677 (1997)

    CAS  PubMed  Google Scholar 

  26. Smit, C.H., van Diepen, A., Nguyen, D.L., Wuhrer, M., Hoffman, K.F., Deelder, A.M., Hokke, C.H.: Glycomic analysis of life stages of the human parasite Schistosoma mansoni reveals developmental expression profiles of functional and antigenic glycan motifs. Mol. Cell. Proteomics. 14, 1750–1769 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanderson, M.J.: Phylogenetic signal in the eukaryotic tree of life. Science. 321, 121–123 (2008)

    CAS  PubMed  Google Scholar 

  28. Aoki, K., Perlman, M., Lim, J.M., Cantu, R., Wells, L., Tiemeyer, M.: Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J. Biol. Chem. 282, 9127–9142 (2007)

    CAS  Google Scholar 

  29. Ten Hagen, K.G., Zhang, L., Tian, E., Zhang, Y.: Glycobiology on the fly: developmental and mechanistic insights from Drosophila. Glycobiology. 19, 102–111 (2009)

    PubMed  Google Scholar 

  30. Kurz, S., Aoki, K., Jin, C., Karlsson, N.G., Tiemeyer, M., Wilson, I.B.H., Paschinger, K.: Targeted release and fractionation reveal glucoronylated and sulphated N- and O-glycans in larvae of dipteran insects. J. Proteome. 126, 172–188 (2015)

    CAS  Google Scholar 

  31. Dönitz, J., Schmitt-Engel, C., Grossmann, D., Gerischer, L., Tech, M., Schoppmeier, M., Klingler, M., Bucher, G.: iBeetle-base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum. Nucleic Acids Res. 43, D720–D725 (2014)

    PubMed  PubMed Central  Google Scholar 

  32. Stanton, R., Hykollari, A., Eckmair, B., Malzl, D., Dragosits, M., Palmberger, D., Wang, P., Wilson, I.B.H., Paschinger, K.: The underestimated N-glycomes of lepidopteran species. Biochim. Biophys. Acta. 1861, 699–714 (2017)

    CAS  PubMed Central  Google Scholar 

  33. Kajihura, H., Hamaguchi, Y., Mizushima, H., Misaki, R., Fujiyama, K.: Sialylation potentials of the silkworm, Bombyx mori; B. mori possesses an active α2,6-sialyltransferase. Glycobiology. 25, 1441–1453 (2015)

    Google Scholar 

  34. Mabashi-Asazuma, H., Sohn, B.H., Kim, Y.S., Kuo, C.W., Khoo, K.H., Kucharski, C.A., Fraser, M.J.J., Jarvis, D.L.: Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. Insect Biochem. Mol. Biol. 65, 20–27 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Soya, S., Sahar, U., Karaçali, S.: Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging. Invertebr. Neurosci. (2016). https://doi.org/10.1007/s10158-016-0191-6

  36. Kubelka, V., Altmann, F., Staudacher, E., Tretter, V., März, L., Hård, K., Kamerling, J.P., Vliegenthart, J.F.: Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. Eur. J. Biochem. 213, 1193–1204 (1993)

    CAS  PubMed  Google Scholar 

  37. Kubelka, V., Altmann, F., März, L.: The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconj. J. 12, 77–83 (1995)

    CAS  PubMed  Google Scholar 

  38. Scheys, F., De Schutter, K., Shen, Y., Yu, N., Smargiasso, N., De Pauw, E., Van Damme, E.J.M., Smagghe, G.: The N-glycome of the hemipteran pest insect Nilaparvata lugens reveals unexpected sex differences. Insect Biochem. Mol. Biol. (2019). https://doi.org/10.1016/j.ibmb.2019.01.008

    CAS  PubMed  Google Scholar 

  39. Cattaneo, F., Pasini, M.E., Intra, J., Matsumoto, M., Briani, F., Hoshi, M., Perotti, M.E.: Identification and expression analysis of Drosophila melanogaster genes encoding beta-hexosaminidases of the sperm plasma membrane. Glycobiology. 16, 786–800 (2006)

    CAS  PubMed  Google Scholar 

  40. Cattaneo, F., Pasini, M.E., Perotti, M.E.: Glycosidases are present on the surface of Drosophila melanogaster spermatozoa. Mol. Reprod. Dev. 48, 276–281 (1997)

    CAS  PubMed  Google Scholar 

  41. Cattaneo, F., Ogiso, M., Hoshi, M., Perotti, M.E., Pasini, M.E.: Purification and characterization of the plasma membrane glycosidases of Drosophila melanogaster spermatozoa. Insect Biochem. Mol. Biol. 32, 929–941 (2002)

    CAS  PubMed  Google Scholar 

  42. Intra, J., Cenni, F., Perotti, M.E.: An α-L-fucosidase potentially involved in fertilization is present on Drosophila spermatozoa surface. Mol. Reprod. Dev. 73, 1149–1158 (2006)

    CAS  PubMed  Google Scholar 

  43. Intra, J., De Caro, D., Perotti, M.E., Perotti, M.E.: Glycosidases in the plasma membrane of Ceratitis capitata spermatozoa. Insect Biochem. Mol. Biol. 41, 90–100 (2011)

    CAS  PubMed  Google Scholar 

  44. Pasini, M.E., Intra, J., Gomulski, L.M., Calvenzani, V., Petroni, K., Briani, F., Perotti, M.E.: Identification and expression profiling of Ceratitis capitata genes coding for β-hexosaminidases. Gene. 473, 44–56 (2010)

    PubMed  Google Scholar 

  45. Stephens, K., Thaler, C.D., Cardullo, R.A.: Characterization of plasma membrane associated type II α-D-mannosidase and β-N-acetylglucosaminidase of Aquarius remigis sperm. Insect Biochem. Mol. Biol. 60, 78–85 (2015)

    CAS  PubMed  Google Scholar 

  46. Intra, J., Cenni, F., Pavesi, G., Pasini, M.E., Perotti, M.E.: Interspecific analysis of the glycosidases of the sperm plasma membrane in Drosophila. Mol. Reprod. Dev. 76, 85–100 (2009)

    CAS  PubMed  Google Scholar 

  47. Perotti, M., Cattaneo, F., Pasini, M.E., Vernì, F., Hackstein, J.H.P.: Male sterile mutant casanova gives clues to mechanisms of sperm-egg interactions in Drosophila melanogaster. Mol. Reprod. Dev. 60, 248–259 (2001)

    CAS  PubMed  Google Scholar 

  48. Intra, J., Veltri, C., De Caro, D., Perotti, M.E., Pasini, M.E.: In vitro evidence for the participation of Drosophila melanogaster sperm β-N-acetylglucosaminidases in the interactions with glycans carrying terminal N-acetylglucosamine residues on the egg's envelopes. Arch. Insect Biochem. Physiol. (2017). https://doi.org/10.1002/arch.21403

    Google Scholar 

  49. Intra, J., Concetta, V., De Caro, D., Perotti, M.E., Pasini, M.E.: Drosophila sperm surface alpha-L-fucosidase interacts with the egg coats through its core fucose residues. Insect Biochem. Mol. Biol. 63, 133–143 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Smagghe.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheys, F., Van Damme, E.J.M. & Smagghe, G. Let’s talk about sexes: sex-related N-glycosylation in ecologically important invertebrates. Glycoconj J 37, 41–46 (2020). https://doi.org/10.1007/s10719-019-09866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09866-2

Keywords

Navigation