Towards automation of glycomic profiling of complex biological materials


Glycosylation is considered one of the most complex and structurally diverse post-translational modifications of proteins. Glycans play important roles in many biological processes such as protein folding, regulation of protein stability, solubility and serum half-life. One of the ways to study glycosylation is systematic structural characterizations of protein glycosylation utilizing glycomics methodology based around mass spectrometry (MS). The most prevalent bottleneck stages for glycomic analyses is laborious sample preparation steps. Therefore, in this study, we aim to improve sample preparations by automation. We recently demonstrated the successful application of an automated high-throughput (HT), glycan permethylation protocol based on 96-well microplates, in the analysis of purified glycoproteins. Therefore, we wanted to test if these developed HT methodologies could be applied to more complex biological starting materials. Our automated 96-well-plate based permethylation method showed very comparable results with established glycomic methodology. Very similar glycomic profiles were obtained for complex glycoprotein/protein mixtures derived from heterogeneous mouse tissues. Automated N-glycan release, enrichment and automated permethylation of samples proved to be convenient, robust and reliable. Therefore we conclude that these automated procedures are a step forward towards the development of a fully automated, fast and reliable glycomic profiling system for analysis of complex biological materials.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Dalziel, M., Crispin, M., Scanlan, C.N., Zitzmann, N., Dwek, R.A.: Emerging principles for the therapeutic exploitation of glycosylation. Science. 343, 1235681 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

  3. 3.

    Adamczyk, B., Tharmalingam, T., Rudd, P.M.: Glycans as cancer biomarkers. Biochimica et Biophysica Acta - General Subjects 1820:1347–1353 (2012).

  4. 4.

    Varki, A.: Biological roles of glycans. Glycobiology. 27, 3–49 (2017)

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    North, S.J., Hitchen, P.G., Haslam, S.M., Dell, A.: Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19, 498–506 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Morelle, W., Michalski, J.-C.: Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2, 1585–1602 (2007)

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Dotz, V., Haselberg, R., Shubhakar, A., Kozak, R.P., Falck, D., Rombouts, Y., Reusch, D., Somsen, G.W., Fernandes, D.L., Wuhrer, M.: Mass spectrometry for glycosylation analysis of biopharmaceuticals. TrAC, Trends Anal. Chem. 73, 1–9 (2015)

    Article  CAS  Google Scholar 

  8. 8.

    Ciucanu, I.: Per-O-methylation reaction for structural analysis of carbohydrates by mass spectrometry. Anal. Chim. Acta. 576, 147–155 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Dell, A.: Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods Enzymol. 193, 647–660 (1990)

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Wada, Y., Azadi, P., Costello, C.E., Dell, A., Dwek, R.A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N.G., Kato, K., Kawasaki, N., Khoo, K.-H., Kim, S., Kondo, A., Lattova, E., Mechref, Y., Miyoshi, E., Nakamura, K., Narimatsu, H., Novotny, M.V., Packer, N.H., Perreault, H., Peter-Katalinic, J., Pohlentz, G., Reinhold, V.N., Rudd, P.M., Suzuki, A., Taniguchi, N.: Supplemental data: comparison of the methods for profiling glycoprotein glycans--HUPO human disease Glycomics/proteome initiative multi-institutional study. Glycobiology. 17, 411–422 (2007)

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Wada, Y., Dell, A., Haslam, S.M., Rangè Re Tissot, B., Canis, K.V., Azadi, P., Bä Ckströ, M., Costello, C.E., Hansson, G.C., Hiki, Y., Ishihara, M., Ito, H., Kakehi, K., Karlsson, N., Hayes, C.E., Kato, K., Kawasaki, N., Khoo, K.-H., Kobayashi, K., Kolarich, D., Kondo, A., Lebrilla, C., Nakano, M., Narimatsu, H., Novak, J., Novotny, M.V., Ohno, E., Packer, N.H., Palaima, E., Renfrow, M.B., Tajiri, M., Thomsson, K.A., Yagi, H., Yu, S.-Y., Taniguchi, N.: Comparison of methods for profiling O-glycosylation. Mol. Cell. Proteomics. 9, 719–727 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Lei, M., Mechref, Y., Novotny, M.V.: Structural analysis of sulfated glycans by sequential double-Permethylation using methyl iodide and Deuteromethyl iodide. J. Am. Soc. Mass Spectrom. 20, 1660–1671 (2009)

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Stalnaker, S.H., Aoki, K., Lim, J.M., Porterfield, M., Liu, M., Satz, J.S., Buskirk, S., Xiong, Y., Zhang, P., Campbell, K.P., Hu, H., Live, D., Tiemeyer, M., Wells, L.: Glycomic analyses of mouse models of congenital muscular dystrophy. J. Biol. Chem. 286, 21180–21190 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Macauley, M.S., Crocker, P.R., Paulson, J.C.: Siglec regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

  15. 15.

    North, S.J., Jang-Lee, J., Harrison, R., Canis, K., Ismail, M.N., Trollope, A., Antonopoulos, A., Pang, P.-C., Grassi, P., Al-Chalabi, S., Etienne, A.T., Dell, A., Haslam, S.M.: Mass spectrometric analysis of mutant mice. Methods Enzymol. 478, 27–77 (2010).

  16. 16.

    Shubhakar, A., Kozak, R.P., Reiding, K.R., Royle, L., Spencer, D.I.R., Fernandes, D.L., Wuhrer, M.: Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS. Anal. Chem. 88, 8562–8569 (2016)

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Bern, M., Brito, A.E., Pang, P.-C., Rekhi, A., Dell, A., Haslam, S.M.: Polylactosaminoglycan glycomics: enhancing the detection of high-molecular-weight N-glycans in matrix-assisted laser desorption ionization time-of-flight profiles by matched filtering. Mol. Cell. Proteomics. 12, 996–1004 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Kolarich, D., Rapp, E., Struwe, W.B., Haslam, S.M., Zaia, J., McBride, R., Agravat, S., Campbell, M.P., Kato, M., Ranzingera, R., Kettnerb, C., York, W.S.: The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Mol. Cell. Proteomics. 12, 991–995 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 1650–1659 (2008).

  20. 20.

    Kang, P., Mechref, Y., Novotny, M.V.: High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22, 721–734 (2008).

  21. 21.

    Cheng, P.F., Snovida, S., Ho, M.Y., Cheng, C.W., Wu, A.M., Khoo, K.H.: Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Anal. Bioanal. Chem. 405, 6683–6695 (2013)

    Article  PubMed  CAS  Google Scholar 

Download references


This work was supported by a Business Innovation Voucher funded by IBCarb and Biotechnology and Biological Sciences Research Council (BBSRC) and by the European Union Seventh Framework Programmes HighGlycan (Grant Number 278535). Support was also provided by grants BB/K016164/1 and BB/F008309/1 from the Biotechnology and Biological Sciences Research Council. The authors are also grateful to Manfred Wuhrer for critical reading of this manuscript.

Author information



Corresponding authors

Correspondence to Archana Shubhakar or Stuart M. Haslam.

Ethics declarations

Conflicts of interest

The authors declare the following competing financial interest(s): Ludger Ltd. is a commercial bioscience company specializing in development and validation of glycoprofiling technology. The following authors, A.S., D.I.R.S. and D.L.F. are employed by Ludger Ltd. Products from Ludger were used in this research.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Electronic supplementary material


(PDF 763 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shubhakar, A., Pang, P., Fernandes, D.L. et al. Towards automation of glycomic profiling of complex biological materials. Glycoconj J 35, 311–321 (2018).

Download citation


  • N- and O-glycosylation
  • Mouse tissues
  • Permethylation
  • Automation
  • Glycan characterisation