Skip to main content
Log in

Catfish rhamnose-binding lectin induces G0/1 cell cycle arrest in Burkitt’s lymphoma cells via membrane surface Gb3

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Silurus asotus egg lectin (SAL), an α-galactoside-binding protein isolated from the eggs of catfish, is a member of the rhamnose-binding lectin family that binds to Gb3 glycan (Galα1–4Galβ1–4Glc). We have previously demonstrated that SAL reduces the proliferation of Gb3-expressing Burkitt’s lymphoma Raji cells and confirm here that it does not reduce their viability, indicating that unlike other lectins, it is not cytotoxic. The aim of this study was to determine the signal transduction mechanism(s) underlying this novel SAL/Gb3 binding-mediated effect profile. SAL/Gb3 interaction arrested the cell cycle through increasing the G0/1 phase population of Raji cells. SAL suppressed the transcription of cell cycle-related factors such as c-MYC, cyclin D3, and cyclin-dependent protein kinase (CDK)-4. Conversely, the CDK inhibitors p21 and p27 were elevated by treatment with SAL. In particular, the production of p27 in response to SAL treatment increased steadily, whereas p21 production was maximal at 12 h and lower at 24 h. Activation of Ras-MEK-ERK pathway led to an increase in expression of p21. Notably, treatment of Raji cells with anti-Gb3 mAb alone did not produce the above effects. Taken together, our findings suggest that Gb3 on the Raji cell surface interacts with SAL to trigger sequential GDP-Ras phosphorylation, Ras-MEK-ERK pathway activation, p21 production, and cell cycle arrest at the G0/1 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

BrdU:

Bromodeoxy uridine

CCND3:

Cyclin D3

CDK:

Cyclin-dependent protein kinase

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

Gb3:

Galα1–4Galβ1–4Glc-Cer

GDP:

Guanosine diphosphate

GEM:

Glycosphingolipid-enriched microdomains

GTP:

Guanosine triphosphate

GSL:

Glycosphingolipid

mAb:

Monoclonal antibody

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

PVDF:

Polyvinylidene difluoride

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

SAL:

Silurus asotus egg lectin

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SUEL:

Sea urchin egg lectin

References

  1. Krajhanzl A., Horejsi V., Kocourek K.: Studies on lectins. XLI. Isolation and characterization of a blood group B specific lectin from the role of the powan (Coregonus lavaretus maraena). Biochem. Biophys Acta. 532, 209–214 (1978)

    CAS  PubMed  Google Scholar 

  2. Krajhanzl A., Horejsi V., Kocourek K.: Studies on lectins. XLII. Isolation, partial characterization and comparison of lectins from the roe of five fish species. Biochem. Biophys. Acta. 532, 215–224 (1978)

    CAS  Google Scholar 

  3. Sakakibara F., Kawauchi H., Takayanagi G.: Blood group B-specific lectin of Plecoglossus altivelis (Ayu fish) eggs. Biochim Biophys Acta. 841, 103–111 (1985)

    Article  CAS  PubMed  Google Scholar 

  4. Ozeki Y., Matsui T., Suzuki M., Titani T.: Amino acid sequence and molecular characterization of a D-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. Biochemistry. 30, 2391–2394 (1991)

    Article  CAS  PubMed  Google Scholar 

  5. Hosono M., Ishikawa K., Mineki R., Murayama K., Numata C., Ogawa Y., Takayanagi Y., Nitta K.: Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Biochim Biophys Acta. 1472, 668–675 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Kawano T., Sugawara S., Hosono M., Tatsuta T., Nitta K.: Alteration of gene expression induced by Silurus asotus lectin in Burkitt’s lymphoma cells. Biol Pharm Bull. 31, 998–1002 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Sugawara S., Hosono M., Ogawa Y., Takayanagi M., Nitta K.: Catfish egg lectin causes rapid activation of multidrug resistance 1 P-glycoprotein as a lipid translocase. Biol Pharm Bull. 28, 434–441 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Shirai T., Watanabe Y., Lee M.S., Ogawa T., Muramoto K.: Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. J Mol Biol. 391, 390–403 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe M., Kono T., Matsushima-Hibiya Y., Kanazawa T., Nishisaka N., Kishimoto T., Koyama K., Sugimura T., Wakabayashi K.: Molecular cloning of an apoptosis-inducing protein, pierisin, from cabbage butterfly: possible involvement of ADP-ribosylation in its activity. Proc Natl Acad Sci U S A. 96, 10608–10613 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiotani B., Kobayashi M., Watanabe M., Yamamoto K., Sugimura T., Wakabayashi K.: Involvement of the ATR- and ATM-dependent checkpoint responses in cell cycle arrest evoked by pierisin-1. Mol Cancer Res. 4, 125–133 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Matsushima-Hibiya Y., Watanabe M., Hidari K.I., Miyamoto D., Suzuki Y., Kasama T., Kanazawa T., Koyama K., Sugimura T., Wakabayashi K.: Identification of glycosphingolipid receptors for pierisin-1, a guanine-specific ADP-ribosylation toxin from the cabbage butterfly. J Biol Chem. 278, 9972–9978 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Katagiri Y.U., Mori T., Nakajima H., Katagiri C., Taguchi T., Takeda T., Kiyokawa N., Fujimoto J.: Activation of Src family kinase yes induced by Shiga toxin binding to globotriaosyl ceramide (Gb3/CD77) in low density, detergent-insoluble microdomains. J Biol Chem. 274, 35278–35282 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Hosono M., Kawauchi H., Nitta K., Takayanagi Y., Shiokawa H., Mineki R., Murayama K.: Purification and characterization of Silurus Asotus (catfish) roe lectin. Biol Pharm Bull. 16, 1–5 (1993)

    Article  CAS  PubMed  Google Scholar 

  14. Tennant J.R.: Evaluation of the trypan blue technique for determination of cell viability. Transplantation. 2, 685–694 (1964)

    Article  CAS  PubMed  Google Scholar 

  15. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)

    Article  CAS  PubMed  Google Scholar 

  16. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent. J Biol Chem. 193, 265 (1951)

    CAS  PubMed  Google Scholar 

  17. Matsudaira P.T.: Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 262, 10035–10038 (1987)

    CAS  PubMed  Google Scholar 

  18. Taylor S.J., Shalloway D.: Cell cycle-dependent activation of ras. Curr Biol. 6, 1621–1627 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Taylor S.J., Resnick R.J., Shalloway D.: Nonradioactive determination of ras-GTP levels using activated ras interaction assay. Methods Enzymol. 333, 333–342 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Yamauchi N., Takezawa T., Kizaki K., Herath C.B., Hashizume K.: Proliferative potential of endometrial stromal cells, and endometrial and placental expression of cyclin in the bovine. J Reprod Dev. 49, 553–560 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt B.A., Rose A., Steinhoff C., Strohmeyer T., Hartmann M., Ackermann R.: Up-regulation of cyclin-dependent kinase 4/cyclin D2 expression but down-regulation of cyclin-dependent kinase 2/cyclin E in testicular germ cell tumors. Cancer Res. 61, 4214–4221 (2001)

    CAS  PubMed  Google Scholar 

  22. Mateyak M.K., Obaya A.J., Sedivy J.M.: c-Myc regulates Cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol. 19, 4672–4683 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Colo M.D., Mcmahon S.B.: The myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene. 18, 2916–2924 (1999)

    Article  Google Scholar 

  24. Pines J.: Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 308, 697–711 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sherr C.J.: Cancer cell cycles. Science. 274, 1672–1677 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Eguchi H., Carpentier S., Kim S.S., Moss S.F.: p27kip1 regulates the apoptotic response of gastric epithelial cells to Helicobacter pylori. Gut. 53, 797–804 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russo A.A., Jeffrey P.D., Patten A.K., Massagué J., Pavletich N.P.: Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature. 382, 325–331 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Wong E.W., Chang F., Lehmann B., Terrian D.M., Milella M., Tafuri A., Stivala F., Libra M., Basecke J., Evangelisti C., Martelli A.M., Franklin R.A.: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 1773, 1263–1284 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. Fujii Y., Dohmae N., Takio K., Kawsar S.M., Matsumoto R., Hasan I., Koide Y., Kanaly R.A., Yasumitsu H., Ogawa Y., Sugawara S., Hosono M., Nitta K., Hamako J., Matusi T., Ozeki Y.: A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J Biol Chem. 287, 44772–44783 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park S.Y., Kwak C.Y., Shayman J.A., Kim J.H.: Globoside promotes activation of ERK by interaction with the epidermal growth factor receptor. Biochim Biophys Acta. 1820, 1141–1148 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nadeem L., Brkic J., Chen Y.F., Bui T., Munir S., Peng C.: Cytoplasmic mislocalization of p27 and CDK2 mediates the anti-migratory and anti-proliferative effects of nodal in human trophoblast cells. J Cell Sci. 126, 445–453 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Hong S.K., Kim J.H., Lin M.F., Park J.I.: The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res. 317, 2671–2682 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hwang C.Y., Lee C., Kwon K.S.: Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1. Mol Cell Biol. 29, 3379–3389 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hancock J.F.: Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 4, 373–385 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Avruch J., Zhang X.F., Kyriakis J.M.: Raf meets ras: completing the framework of a signal transduction pathway. Trends Biochem Sci. 19, 279–283 (1994)

    Article  CAS  PubMed  Google Scholar 

  36. Fischer C., Sanchez-Ruderisch H., Welzel M., Wiedenmann B., Sakai T., André S., Gabius H.J., Khachigian L., Detjen K.M., Rosewicz S.: Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem. 280, 37266–37277 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Ogawa T., Watanabe M., Naganuma T., Muramoto K.: Diversified carbohydrate-binding lectins from marine resources. J Amino Acids. 2011(838914), (2011)

  38. Tateno H.: SUEL-related lectins, a lectin family widely distributed throughout organisms. Biosci Biotechnol Biochem. 74, 1141–1114 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. Murayama K., Taka H., Kaga N., Fujimura T., Mineki R., Shindo N., Morita M., Hosono M., Nitta K.: The structure of Silurus Asotus (catfish) roe lectin (SAL): identification of a noncovalent trimer by mass spectrometry and analytical ultracentrifugation. Anal Biochem. 247, 319–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  40. Harper J.W., Adami G.R., Wei N., Keyomarsi K., Elledge S.J.: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75, 805–816 (1993)

    Article  CAS  PubMed  Google Scholar 

  41. Jänicke R.U., Sohn D., Essmann R., Shulze-Osthoff K.: The multiple battles fought by anti-apoptotic p21. Cell Cycle. 6, 407–413 (2007)

    Article  PubMed  Google Scholar 

  42. Franchi N., Schiavon F., Carletto M., Gasparini F., Bertoloni G., Tosato S.C., Ballarin L.: Immune roles of a rhamnose-binding lectin in the colonial ascidian Botryllus schlosseri. Immunobiology. 216, 725–736 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. Kawsar S.M.A., Matsumoto R., Fujii Y., Matsuoka H., Masuda N., Chihiro I., Yasumitsu H., Kanaly R.A., Sugawara S., Hosono M., Nitta K., Ishizaki N., Dogasaki C., Hamako J., Matsui T., Ozeki Y.: Cytotoxicity and glycan-binding profile of a D-galactose-binding lectin from the eggs of a Japanese sea hare (Aplysia kurodai). Protein J. 30, 509–519 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe Y., Tateno H., Nakamura-Tsuruta S., Kominami J., Hirabayashi J., Nakamura O., Watanabe T., Kamiya H., Naganuma T., Ogawa T., Naudé R.J., Muramoto K.: The function of rhamnose-binding lectin innate immunity by restricted binding to Gb3. Dev Comp Immunol. 33, 187–197 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. Kawsar S.M., Matsumoto R., Fujii Y., Yasumitsu H., Dogasaki C., Hosono M., Nitta K., Hamako J., Matsui T., Kojima N., Ozeki Y.: Purification and biochemical characterization of a D-galactose binding lectin from Japanese sea hare (Aplysia kurodai) eggs. Biochemistry (Mosc). 74, 709–716 (2009)

    Article  CAS  Google Scholar 

  46. Naganuma T., Ogawa T., Hirabayashi J., Kasai K., Kamiya H., Muramoto K.: Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve. Pteria penguin Mol Divers. 10, 607–618 (2006)

  47. Lee J.K., Buckhaults P., Wilkes C., Teilhet M., King M.L., Moremen K.W., Pierce M.: Cloning and expression of a Xenopus laevis oocyte lectin and characterization of its mRNA levels during early development. Glycobiology. 7, 367–372 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the “Academic Frontier” Project for Private Universities and the “Strategic Project to Support the Formation of Research Bases at Private Universities (SENRYAKU)” from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Hosono.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawara, S., Im, C., Kawano, T. et al. Catfish rhamnose-binding lectin induces G0/1 cell cycle arrest in Burkitt’s lymphoma cells via membrane surface Gb3. Glycoconj J 34, 127–138 (2017). https://doi.org/10.1007/s10719-016-9739-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9739-2

Keywords

Navigation