Skip to main content

Developmental changes in the level of free and conjugated sialic acids, Neu5Ac, Neu5Gc and KDN in different organs of pig: a LC-MS/MS quantitative analyses

Abstract

Recent studies have shown a relationship between the level of the sialic acid (Sia), N-glycolylneuraminic acid (Neu5Gc) in red meat and its risk in cancer, cardiovascular and inflammatory diseases. Unresolved is the Sia concentration in different organs of piglets during development. Our aim was to determine the level of free and conjugated forms of Neu5Gc, N-acetylneuraminic acid (Neu5Ac) and ketodeoxynonulsonic acid (Kdn) in fresh and cooked spleen, kidney, lung, heart, liver, and skeletal muscle from 3-days-old (n = 4–8), 38-days-old (n = 10) and adult piglets (n = 4) by LC-MS/MS. Our findings show: (1) Lung tissue from 3 days-old piglets contained the highest level of total Sia (14.6 μmol/g protein) compared with other organs or age groups; (2) Unexpectedly, Neu5Gc was the major Sia in spleen (67–79 %) and adult lung (36–49 %) while free Kdn was the major Sia in skeletal muscle. Conjugated Neu5Ac was the highest Sia in other organs (61–84 %); (3) Skeletal muscle contained the lowest concentration of Neu5Gc in fresh and cooked meat; (4) Kdn accounted for <5 % of the total Sia in most organs; (5) During development, the total Sia concentration showed a 44–79 % decrease in all organs; (6) In adult piglets, the high to low rank order of total Sia was lung, heart, spleen, kidney, liver and skeletal muscle. In conclusion, the high level of Neu5Gc in all organs compared to skeletal muscle is a potential risk factor suggesting that dietary consumption of organ meats should be discouraged in favor of muscle to protect against cancer, cardiovascular and other inflammatory diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

Sia:

Sialic acid

Neu5Ac:

N-acetylneuraminic acid

Neu5Gc:

N-glycolylneuraminic acid

Kdn:

2-keto-3-deoxy-D-glycero- D-galacto-nononic acid (Ketodeoxynonulosonic acid)

LC-MS/MS:

Liquid chromatography-tandem mass spectrometry

References

  1. 1.

    Havelaar A.C., Mancini G.M., Beerens C.E., Souren R.M., Verheijen F.W.: Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter. J. Biol. Chem. 273(51), 34568–34574 (1998)

    CAS  PubMed  Google Scholar 

  2. 2.

    Schauer R.: Achievements and challenges of sialic acid research. Glycoconj. J. 17(7–9), 485–499 (2000)

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Schauer R.: Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struc. Biol. 19(5), 507–514 (2009). doi:10.1016/j.sbi.2009.06.003

    CAS  Article  Google Scholar 

  4. 4.

    Troy II F.A.: Polysialylation: from bacteria to brains. Glycobiology. 2(1), 5–23 (1992)

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Chen X., Varki A.: Advances in the Biology and Chemistry of Sialic Acids. ACS Chem. Biol. 5(2), 163–176 (2010). doi:10.1021/cb900266r

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sato C., Kitajima K.: Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J. Biochem. 154(2), 115–136 (2013). doi:10.1093/jb/mvt057

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Wang B.: Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 3(3), 465S–472S (2012). doi:10.3945/an.112.001875

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Diaz S.L., Padler-Karavani V., Ghaderi D., Hurtado-Ziola N., Yu H., Chen X., Brinkman-Van der Linden E.C.M., Varki A., Varki N.M.: Sensitive and Specific Detection of the Non-Human Sialic Acid N-Glycolylneuraminic Acid In Human Tissues and Biotherapeutic Products. PLoS ONE. 4(1), e4241 (2009). doi:10.1371/journal.pone.0004241

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Inoue S., Lin S.L., Chang T., Wu S.H., Yao C.W., Chu T.Y., Troy 2nd F.A., Inoue Y.: Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto- nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells. J. Biol. Chem. 273(42), 27199–27204 (1998)

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wang F., Xie B., Wang B., Troy 2nd F.A.: LC-MS/MS Glycomic Analyses of Free and Conjugated Forms of the Sialic Acids, Neu5Ac, Neu5Gc and Kdn in Human Throat Cancers. Glycobiology. (2015). doi:10.1093/glycob/cwv051

    Google Scholar 

  11. 11.

    Morimoto N., Nakano M., Kinoshita M., Kawabata A., Morita M., Oda Y., Kuroda R., Kakehi K.: Specific distribution of sialic acids in animal tissues as examined by LC-ESI-MS after derivatization with 1, 2-diamino-4, 5-methylenedioxybenzene. Anal. Chem. 73(22), 5422–5428 (2001)

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    van der Ham M., Prinsen B.H.C.M.T., Huijmans J.G.M., Abeling N.G.G.M., Dorland B., Berger R., de Koning T.J., Velden M.G.M.D.S.V.: Quantification of free and total sialic acid excretion by LC-MS/MS. J. Chromatogr. B. 848(2), 251–257 (2007). doi:10.1016/j.jchromb.2006.10.066

    Article  Google Scholar 

  13. 13.

    Rajan R., Sheth A.R., Rao S.S.: Sialic-Acid, Sialyltransferase and Neuraminidase Levels in Maternal Plasma. Urine and Lymphocytes during Pregnancy and Postpartum Period - a Longitudinal-Study in Women. Eur. J. Obstet. Gyn R B. 16(1), 37–46 (1983). doi:10.1016/0028-2243(83)90218-6

    CAS  Google Scholar 

  14. 14.

    Karunanithi, D., Radhakrishna, A., Biju, V.: Quantitative determination of sialic acid in Indian milk and milk products. International Journal of Applied Biology and P (2013)

  15. 15.

    Spichtig V., Michaud J., Austin S.: Determination of sialic acids in milks and milk-based products. Anal. Biochem. 405(1), 28–40 (2010). doi:10.1016/j.ab.2010.06.010

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    ten Bruggencate S.J.M., Bovee-Oudenhoven I.M.J., Feitsma A.L., van Hoffen E., Schoterman M.H.C.: Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 72(6), 377–389 (2014). doi:10.1111/nure.12106

    Article  PubMed  Google Scholar 

  17. 17.

    Steenbergen S.M., Vimr E.R.: Functional Relationships of the Sialyltransferases Involved in Expression of the Polysialic Acid Capsules of Escherichia coli K1 and K92 and Neisseria meningitidis Groups B or C. J. Biol. Chem. 278(17), 15349–15359 (2003)

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Brunngraber E.G., Brown B.D., Chang I.: Glycoproteins in subacute sclerosing leukoencephalitis: isolation and carbohydrate composition of glycopeptides from human brain. J. Neuropath. Experim. neurol. 30(3), 525–535 (1971)

    CAS  Article  Google Scholar 

  19. 19.

    Wang B., Miller J.B., McNeil Y., McVeagh P.: Sialic acid concentration of brain gangliosides: Variation among eight mammalian species. Comp Biochem Phys A. 119(1), 435–439 (1998). doi:10.1016/S1095-6433(97)00445-5

    CAS  Article  Google Scholar 

  20. 20.

    Stasche R., Hinderlich S., Weise C., Effertz K., Lucka L., Moormann P., Reutter W.: A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver - Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272(39), 24319–24324 (1997). doi:10.1074/jbc.272.39.24319

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Hinderlich S., Stasche R., Zeitler R., Reutter W.: A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver - Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272(39), 24313–24318 (1997). doi:10.1074/jbc.272.39.24313

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Varki A.: Sialic acids in human health and disease. Trends Mol. Med. 14(8), 351–360 (2008). doi:10.1016/j.molmed.2008.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wang B.: Sialic acid is an essential nutrient for brain development and cognition. Ann Rev. Nutr. 29, 177–222 (2009). doi:10.1146/annurev.nutr.28.061807.155515

    Article  Google Scholar 

  24. 24.

    Troy F.A.: Sialobiology and the Polysialic Acid Glycotope Occurrence, Structure, Function, Synthesis, and Glycopathology. In: Rosenberg A. (ed.) Biology of the Sialic Acids, pp. 95–144. Springer US, Boston, MA (1995)

    Chapter  Google Scholar 

  25. 25.

    Drake P.M., Nathan J.K., Stock C.M., Chang P.V., Muench M.O., Nakata D., Reader J.R., Gip P., Golden K.P., Weinhold B., Gerardy-Schanh R., Troy II F.A., Bertozzi C.R.: Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J. Immunol. 181(10), 6850–6858 (2008)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Davies L.R., Varki A.: Why Is N-Glycolylneuraminic Acid Rare in the Vertebrate Brain? Top. Curr. Chem. 366, 31–54 (2015). doi:10.1007/128_2013_419

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sinha R., Graubard B.I., Cross A.J., Leitzmann M.F., Schatzkin A.: Higher Red Meat Intake May Be a Marker of Risk. Not a Risk Factor Itself Reply. Arch Intern Med. 169(16), 1539–1539 (2009)

    Article  Google Scholar 

  28. 28.

    Samraj A.N., Pearce O.M., Laubli H., Crittenden A.N., Bergfeld A.K., Banda K., Gregg C.J., Bingman A.E., Secrest P., Diaz S.L., Varki N.M., Varki A.: A red meat-derived glycan promotes inflammation and cancer progression. Proc.Natl. Acad. Sci. U. S. A. 112(2), 542–547 (2015). doi:10.1073/pnas.1417508112

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Hedlund M., Tangvoranuntakul P., Takematsu H., Long J.M., Housley G.D., Kozutsumi Y., Suzuki A., Wynshaw-Boris A., Ryan A.F., Gallo R.L., Varki N., Varki A.: N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell. Biol. 27(12), 4340–4346 (2007). doi:10.1128/MCB.00379-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Tangvoranuntakul P., Gagneux P., Diaz S., Bardor M., Varki N., Varki A., Muchmore E.: Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc.Natl. Acad. Sci. U. S. A. 100(21), 12045–12050 (2003). doi:10.1073/pnas.2131556100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cho E., Chen W.Y., Hunter D.J., Stampfer M.J., Colditz G.A., Hankinson S.E., Willett W.C.: Red meat intake and risk of breast cancer among premenopausal women. Arch. Intern. Med. 166(20), 2253–2259 (2006)

    Article  PubMed  Google Scholar 

  32. 32.

    Taylor V.H., Misra M., Mukherjee S.D.: Is red meat intake a risk factor for breast cancer among premenopausal women? Breast Cancer Res. Treat. 117(1), 1–8 (2009)

    Article  PubMed  Google Scholar 

  33. 33.

    Larsen J.: Meat consumption in China now double that in the United States. Earth Policy Institute. 24, (2012)

  34. 34.

    Williams P.: Nutritional composition of red meat. Nutr. Diet. 64, S113–S119 (2007). doi:10.1111/j.1747-0080.2007.00197.x

    Article  Google Scholar 

  35. 35.

    Jiang Z., Rothschild M.F.: Swine genome science comes of age. Int. J. Biol. Sci. 3(3), 129–131 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kwon D.-N., Chang B.-S., Kim J.-H.: Gene expression and pathway analysis of effects of the CMAH deactivation on mouse lung, kidney and heart. PLoS One. 9(9), e107559 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Cheng Y.: Chinese dietary reference intake. 2013 revision introduction. Acta Nutrimenta Sinica. 36, 313–315 (2014)

  38. 38.

    Chen Y., Pan L.L., Liu N., Troy F.A., Wang B.: LC-MS/MS quantification of N-acetylneuraminic acid, N-glycolylneuraminic acid and ketodeoxynonulosonic acid levels in the urine and potential relationship with dietary sialic acid intake and disease in 3- to 5-year-old children. Brit J Nutr. 111(2), 332–341 (2014). doi:10.1017/S0007114513002468

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by research grants from the School of Medicine, Xiamen University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Frederic A. Troy II or Bing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Wang, F., Chen, Y. et al. Developmental changes in the level of free and conjugated sialic acids, Neu5Ac, Neu5Gc and KDN in different organs of pig: a LC-MS/MS quantitative analyses. Glycoconj J 34, 21–30 (2017). https://doi.org/10.1007/s10719-016-9724-9

Download citation

Keywords

  • Sialic acids
  • Neu5Gc
  • LC-MS/MS
  • Development
  • Pig