Glycoconjugate Journal

, Volume 34, Issue 1, pp 21–30 | Cite as

Developmental changes in the level of free and conjugated sialic acids, Neu5Ac, Neu5Gc and KDN in different organs of pig: a LC-MS/MS quantitative analyses

  • Suna Ji
  • Fang Wang
  • Yue Chen
  • Changwei Yang
  • Panwang Zhang
  • Xuebing Zhang
  • Frederic A. TroyIIEmail author
  • Bing WangEmail author
Original Article


Recent studies have shown a relationship between the level of the sialic acid (Sia), N-glycolylneuraminic acid (Neu5Gc) in red meat and its risk in cancer, cardiovascular and inflammatory diseases. Unresolved is the Sia concentration in different organs of piglets during development. Our aim was to determine the level of free and conjugated forms of Neu5Gc, N-acetylneuraminic acid (Neu5Ac) and ketodeoxynonulsonic acid (Kdn) in fresh and cooked spleen, kidney, lung, heart, liver, and skeletal muscle from 3-days-old (n = 4–8), 38-days-old (n = 10) and adult piglets (n = 4) by LC-MS/MS. Our findings show: (1) Lung tissue from 3 days-old piglets contained the highest level of total Sia (14.6 μmol/g protein) compared with other organs or age groups; (2) Unexpectedly, Neu5Gc was the major Sia in spleen (67–79 %) and adult lung (36–49 %) while free Kdn was the major Sia in skeletal muscle. Conjugated Neu5Ac was the highest Sia in other organs (61–84 %); (3) Skeletal muscle contained the lowest concentration of Neu5Gc in fresh and cooked meat; (4) Kdn accounted for <5 % of the total Sia in most organs; (5) During development, the total Sia concentration showed a 44–79 % decrease in all organs; (6) In adult piglets, the high to low rank order of total Sia was lung, heart, spleen, kidney, liver and skeletal muscle. In conclusion, the high level of Neu5Gc in all organs compared to skeletal muscle is a potential risk factor suggesting that dietary consumption of organ meats should be discouraged in favor of muscle to protect against cancer, cardiovascular and other inflammatory diseases.


Sialic acids Neu5Gc LC-MS/MS Development Pig 



Sialic acid


N-acetylneuraminic acid


N-glycolylneuraminic acid


2-keto-3-deoxy-D-glycero- D-galacto-nononic acid (Ketodeoxynonulosonic acid)


Liquid chromatography-tandem mass spectrometry



This study was funded by research grants from the School of Medicine, Xiamen University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Havelaar A.C., Mancini G.M., Beerens C.E., Souren R.M., Verheijen F.W.: Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter. J. Biol. Chem. 273(51), 34568–34574 (1998)PubMedGoogle Scholar
  2. 2.
    Schauer R.: Achievements and challenges of sialic acid research. Glycoconj. J. 17(7–9), 485–499 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    Schauer R.: Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struc. Biol. 19(5), 507–514 (2009). doi: 10.1016/ CrossRefGoogle Scholar
  4. 4.
    Troy II F.A.: Polysialylation: from bacteria to brains. Glycobiology. 2(1), 5–23 (1992)CrossRefPubMedGoogle Scholar
  5. 5.
    Chen X., Varki A.: Advances in the Biology and Chemistry of Sialic Acids. ACS Chem. Biol. 5(2), 163–176 (2010). doi: 10.1021/cb900266r CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sato C., Kitajima K.: Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J. Biochem. 154(2), 115–136 (2013). doi: 10.1093/jb/mvt057 CrossRefPubMedGoogle Scholar
  7. 7.
    Wang B.: Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 3(3), 465S–472S (2012). doi: 10.3945/an.112.001875 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Diaz S.L., Padler-Karavani V., Ghaderi D., Hurtado-Ziola N., Yu H., Chen X., Brinkman-Van der Linden E.C.M., Varki A., Varki N.M.: Sensitive and Specific Detection of the Non-Human Sialic Acid N-Glycolylneuraminic Acid In Human Tissues and Biotherapeutic Products. PLoS ONE. 4(1), e4241 (2009). doi: 10.1371/journal.pone.0004241 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Inoue S., Lin S.L., Chang T., Wu S.H., Yao C.W., Chu T.Y., Troy 2nd F.A., Inoue Y.: Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto- nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells. J. Biol. Chem. 273(42), 27199–27204 (1998)CrossRefPubMedGoogle Scholar
  10. 10.
    Wang F., Xie B., Wang B., Troy 2nd F.A.: LC-MS/MS Glycomic Analyses of Free and Conjugated Forms of the Sialic Acids, Neu5Ac, Neu5Gc and Kdn in Human Throat Cancers. Glycobiology. (2015). doi: 10.1093/glycob/cwv051 Google Scholar
  11. 11.
    Morimoto N., Nakano M., Kinoshita M., Kawabata A., Morita M., Oda Y., Kuroda R., Kakehi K.: Specific distribution of sialic acids in animal tissues as examined by LC-ESI-MS after derivatization with 1, 2-diamino-4, 5-methylenedioxybenzene. Anal. Chem. 73(22), 5422–5428 (2001)CrossRefPubMedGoogle Scholar
  12. 12.
    van der Ham M., Prinsen B.H.C.M.T., Huijmans J.G.M., Abeling N.G.G.M., Dorland B., Berger R., de Koning T.J., Velden M.G.M.D.S.V.: Quantification of free and total sialic acid excretion by LC-MS/MS. J. Chromatogr. B. 848(2), 251–257 (2007). doi: 10.1016/j.jchromb.2006.10.066 CrossRefGoogle Scholar
  13. 13.
    Rajan R., Sheth A.R., Rao S.S.: Sialic-Acid, Sialyltransferase and Neuraminidase Levels in Maternal Plasma. Urine and Lymphocytes during Pregnancy and Postpartum Period - a Longitudinal-Study in Women. Eur. J. Obstet. Gyn R B. 16(1), 37–46 (1983). doi: 10.1016/0028-2243(83)90218-6 Google Scholar
  14. 14.
    Karunanithi, D., Radhakrishna, A., Biju, V.: Quantitative determination of sialic acid in Indian milk and milk products. International Journal of Applied Biology and P (2013)Google Scholar
  15. 15.
    Spichtig V., Michaud J., Austin S.: Determination of sialic acids in milks and milk-based products. Anal. Biochem. 405(1), 28–40 (2010). doi: 10.1016/j.ab.2010.06.010 CrossRefPubMedGoogle Scholar
  16. 16.
    ten Bruggencate S.J.M., Bovee-Oudenhoven I.M.J., Feitsma A.L., van Hoffen E., Schoterman M.H.C.: Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 72(6), 377–389 (2014). doi: 10.1111/nure.12106 CrossRefPubMedGoogle Scholar
  17. 17.
    Steenbergen S.M., Vimr E.R.: Functional Relationships of the Sialyltransferases Involved in Expression of the Polysialic Acid Capsules of Escherichia coli K1 and K92 and Neisseria meningitidis Groups B or C. J. Biol. Chem. 278(17), 15349–15359 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Brunngraber E.G., Brown B.D., Chang I.: Glycoproteins in subacute sclerosing leukoencephalitis: isolation and carbohydrate composition of glycopeptides from human brain. J. Neuropath. Experim. neurol. 30(3), 525–535 (1971)CrossRefGoogle Scholar
  19. 19.
    Wang B., Miller J.B., McNeil Y., McVeagh P.: Sialic acid concentration of brain gangliosides: Variation among eight mammalian species. Comp Biochem Phys A. 119(1), 435–439 (1998). doi: 10.1016/S1095-6433(97)00445-5 CrossRefGoogle Scholar
  20. 20.
    Stasche R., Hinderlich S., Weise C., Effertz K., Lucka L., Moormann P., Reutter W.: A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver - Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272(39), 24319–24324 (1997). doi: 10.1074/jbc.272.39.24319 CrossRefPubMedGoogle Scholar
  21. 21.
    Hinderlich S., Stasche R., Zeitler R., Reutter W.: A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver - Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272(39), 24313–24318 (1997). doi: 10.1074/jbc.272.39.24313 CrossRefPubMedGoogle Scholar
  22. 22.
    Varki A.: Sialic acids in human health and disease. Trends Mol. Med. 14(8), 351–360 (2008). doi: 10.1016/j.molmed.2008.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang B.: Sialic acid is an essential nutrient for brain development and cognition. Ann Rev. Nutr. 29, 177–222 (2009). doi: 10.1146/annurev.nutr.28.061807.155515 CrossRefGoogle Scholar
  24. 24.
    Troy F.A.: Sialobiology and the Polysialic Acid Glycotope Occurrence, Structure, Function, Synthesis, and Glycopathology. In: Rosenberg A. (ed.) Biology of the Sialic Acids, pp. 95–144. Springer US, Boston, MA (1995)CrossRefGoogle Scholar
  25. 25.
    Drake P.M., Nathan J.K., Stock C.M., Chang P.V., Muench M.O., Nakata D., Reader J.R., Gip P., Golden K.P., Weinhold B., Gerardy-Schanh R., Troy II F.A., Bertozzi C.R.: Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J. Immunol. 181(10), 6850–6858 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Davies L.R., Varki A.: Why Is N-Glycolylneuraminic Acid Rare in the Vertebrate Brain? Top. Curr. Chem. 366, 31–54 (2015). doi: 10.1007/128_2013_419 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sinha R., Graubard B.I., Cross A.J., Leitzmann M.F., Schatzkin A.: Higher Red Meat Intake May Be a Marker of Risk. Not a Risk Factor Itself Reply. Arch Intern Med. 169(16), 1539–1539 (2009)CrossRefGoogle Scholar
  28. 28.
    Samraj A.N., Pearce O.M., Laubli H., Crittenden A.N., Bergfeld A.K., Banda K., Gregg C.J., Bingman A.E., Secrest P., Diaz S.L., Varki N.M., Varki A.: A red meat-derived glycan promotes inflammation and cancer progression. Proc.Natl. Acad. Sci. U. S. A. 112(2), 542–547 (2015). doi: 10.1073/pnas.1417508112 CrossRefPubMedGoogle Scholar
  29. 29.
    Hedlund M., Tangvoranuntakul P., Takematsu H., Long J.M., Housley G.D., Kozutsumi Y., Suzuki A., Wynshaw-Boris A., Ryan A.F., Gallo R.L., Varki N., Varki A.: N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell. Biol. 27(12), 4340–4346 (2007). doi: 10.1128/MCB.00379-07 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tangvoranuntakul P., Gagneux P., Diaz S., Bardor M., Varki N., Varki A., Muchmore E.: Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc.Natl. Acad. Sci. U. S. A. 100(21), 12045–12050 (2003). doi: 10.1073/pnas.2131556100 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cho E., Chen W.Y., Hunter D.J., Stampfer M.J., Colditz G.A., Hankinson S.E., Willett W.C.: Red meat intake and risk of breast cancer among premenopausal women. Arch. Intern. Med. 166(20), 2253–2259 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Taylor V.H., Misra M., Mukherjee S.D.: Is red meat intake a risk factor for breast cancer among premenopausal women? Breast Cancer Res. Treat. 117(1), 1–8 (2009)CrossRefPubMedGoogle Scholar
  33. 33.
    Larsen J.: Meat consumption in China now double that in the United States. Earth Policy Institute. 24, (2012)Google Scholar
  34. 34.
    Williams P.: Nutritional composition of red meat. Nutr. Diet. 64, S113–S119 (2007). doi: 10.1111/j.1747-0080.2007.00197.x CrossRefGoogle Scholar
  35. 35.
    Jiang Z., Rothschild M.F.: Swine genome science comes of age. Int. J. Biol. Sci. 3(3), 129–131 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kwon D.-N., Chang B.-S., Kim J.-H.: Gene expression and pathway analysis of effects of the CMAH deactivation on mouse lung, kidney and heart. PLoS One. 9(9), e107559 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cheng Y.: Chinese dietary reference intake. 2013 revision introduction. Acta Nutrimenta Sinica. 36, 313–315 (2014)Google Scholar
  38. 38.
    Chen Y., Pan L.L., Liu N., Troy F.A., Wang B.: LC-MS/MS quantification of N-acetylneuraminic acid, N-glycolylneuraminic acid and ketodeoxynonulosonic acid levels in the urine and potential relationship with dietary sialic acid intake and disease in 3- to 5-year-old children. Brit J Nutr. 111(2), 332–341 (2014). doi: 10.1017/S0007114513002468 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of MedicineXiamen UniversityXiamen CityPeople’s Republic of China
  2. 2.Department of Biochemistry and Molecular MedicineUniversity of California School of MedicineDavisUSA
  3. 3.School of Animal & Veterinary SciencesCharles Sturt UniversityWagga WaggaAustralia

Personalised recommendations