Skip to main content
Log in

Synthetic glycoconjugates inhibitors of tumor-related galectin-3: an update

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Galectin-3 is associated with the development and malignancy of several types of tumor, mediating important tumor-related functions, such as tumorigenesis, neoplastic transformation, tumor cell survival, angiogenesis, tumor metastasis and regulation of apoptosis. Therefore, synthetic galectin-3 inhibitors are of utmost importance for development of new antitumor therapeutic strategies. In this review we present an updated selection of synthetic glycoconjugates inhibitors of tumor-related galectin-3, properly addressed as monosaccharide- and disaccharide-based inhibitors, and multivalent-based inhibitors, disclosuring relevant methods for their synthesis along with their inhibitory activities towards galectin-3. In general, Cu(I)-assisted 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reactions were predominantly applied for the synthesis of the described inhibitors, which had their inhibitory activities against galectin-3 evaluated by fluorescence polarization, surface plasmon resonance (SPR), hemagglutination, ELISA and cell imaging assays. Overall, the presented synthetic glycoconjugates represent frontline galectin-3 inhibitors, finding important biomedical applications in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24

Similar content being viewed by others

References

  1. Boligan K.F., Mesa C., Fernandez L.E., von Gunten S.: Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense. Cell. Mol. Life Sci. 72, 1231–1248 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. Dall'Olio F., Malagolini N., Trinchera M., Chiricolo M.: Mechanisms of cancer-associated glycosylation changes. Front. Biosci. (Landmark Ed). 17(670–699), (2012)

  3. Stowell S.R., Ju T., Cummings R.D.: Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakahara S., Raz A.: Biological modulation by lectins and their ligands in tumor progression and metastasis. Anti Cancer Agents Med. Chem. 8, 22–36 (2008)

    Article  CAS  Google Scholar 

  5. Boscher C., Dennis J.W., Nabi I.R.: Glycosylation, galectins and cellular signaling. Curr. Opin. Cell Biol. 23, 383–392 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. Garner O.B., Baum L.G.: Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem. Soc. Trans. 36, 1472–1477 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hockl P.F., Wolosiuk A., Sáez J.M., Bordoni A.V., Croci D.O., Terrones Y.T., Illia G.J., Rabinovich G.A.: Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacol. (2016). doi:10.1016/j.phrs.2016.02.005

    Google Scholar 

  8. Ahmed H., AlSadek D.M.: Galectin-3 as a potential target to prevent cancer metastasis. Clin. Med. Insights Oncol. 25, 113–121 (2015)

    Article  Google Scholar 

  9. Arthur, C. M.; Baruffi, M. D.; Cummings, R. D.; Stowell, S. R.: Galectins: methods and protocols. Stowell, S. R.; Cummings, R. D. (eds.); human press, Vol. 1, Chapter 1, pp 1–35 (2015)

  10. Marchiori M.F., Souto D.E., Bortot L.O., Pereira J.F., Kubota L.T., Cummings R.D., Baruffi M.D., Carvalho I., Campo V.L.: Synthetic 1,2,3-triazole-linked glycoconjugates bind with high affinity to human galectin-3. Bioorg. Med. Chem. 23, 3414–3425 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. van den Brüle F., Califice S., Castronovo V.: Expression of galectins in cancer: a critical review. Glycoconj. J. 19, 537–542 (2004)

    Article  PubMed  Google Scholar 

  12. Liu F.T., Rabinovich G.A.: Galectins as modulators of tumour progression. Nat. Rev. Cancer. 5, 29–41 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Califice S., Castronovo V., Bracke M., et al.: Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene. 23, 7527–7536 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Sun W., Li L., Yang Q., Shan W., Zhang Z., Huang Y.: G3-C12 peptide reverses galectin-3 from foe to friend for active targeting cancer treatment. Mol. Pharm. 12, 4124–4136 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Cecchinelli B., Lavra L., Rinaldo C., Iacovelli S., Gurtner A., Gasbarri A., Ulivieri A., Del Prete F., Trovato M., Piaggio G., Bartolazzi A., Soddu S., Sciacchitano S.: Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis. Mol. Cell. Biol. 26, 4746–4757 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang R.Y., Rabinovich G.A., Liu F.T.: Galectins: structure, function and therapeutic potential. Expert. Rev. Mol. Med. (2008). doi:10.1017/S1462399408000719

    PubMed  Google Scholar 

  17. Leffler H., Carlsson S., Hedlund M., Qian Y., Poirier F.: Introduction to galectins. Glycoconj. J. 19, 433–440 (2004)

    Article  PubMed  Google Scholar 

  18. Knibbs R.N., Agrwal N., Wang J.L., Goldstein I.J.: Carbohydrate-binding protein 35. II. Analysis of the interaction of the recombinant polypeptide with saccharides. J. Biol. Chem. 268, 14940–14947 (1993)

    CAS  PubMed  Google Scholar 

  19. Tejler J., Salameh B., Lefflerc H., Nilsson U.J.: Fragment-based development of triazole-substituted O-galactosyl aldoximes with fragment-induced affinity and selectivity for galectin-3. J. Org. Biomol. Chem. 7, 3982–3990 (2009)

    Article  CAS  Google Scholar 

  20. Bum-Erdene K., Gagarinov I.A., Collins P.M., Winger M., Pearson A.G., Wilson J.C., Leffler H., Nilsson U.J., Grice I.D., Blanchard H.: Investigation into the feasibility of thioditaloside as a novel scaffold for galectin-3-specific inhibitors. Chembiochem. 14, 1331–1339 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Stowell S.R., Karmakar S., Stowell C.J., Baruffi M.D., McEver R.P., Cummings R.D.: Human galectin-1, −2, and −4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood. 109, 219–227 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rapoport E.M., Kurmyshkina O.V., Bovin N.V.: Mammalian galectins: structure, carbohydrate specificity, and functions. Biochem. Mosc. 73, 393–405 (2008)

    Article  CAS  Google Scholar 

  23. Giguere D., Andre S., Bonin M.A., Bellefleur M.A., Provençal A., Cloutier P., Pucci B., Roy R., Gabius H.J.: Inhibitory potential of chemical substitutions at bioinspired sites of β-D-galactopyranose on neoglycoprotein/cell surface binding of two classes of medically relevant lectins. J. Bioorg. Med. Chem. Lett. 19, 3280–3287 (2011)

    Article  CAS  Google Scholar 

  24. Cumpstey I., Sundin A., Leffler H., Nilsson U.J.: C2-symmetrical thiodigalactoside bis-benzamido derivatives as high-affinity inhibitors of galectin-3: efficient lectin inhibition through double arginine-arene interactions. J. Angew. Chem. Int. Ed. 44, 5110–5112 (2005)

    Article  CAS  Google Scholar 

  25. Cumpstey I., Salomonsson E., Sundin A., Leffler H., Nilsson U.J.: Double affinity amplification of galectin-ligand interactions through arginine-arene interactions: synthetic, thermodynamic, and computational studies with aromatic diamido thiodigalactosides. Chem. 14, 4233–4245 (2008)

    Article  CAS  Google Scholar 

  26. Aragão-Leoneti V., Campo V.L., Gomes A.S., Field R.A., Carvalho I.: Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) ‘click chemistry’ in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron. 66, 9475–9492 (2010)

    Article  Google Scholar 

  27. Tiwari V.K., Mishra B.B., Mishra K.B., Mishra N., Singh A.S., Chen X.: Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 116, 3086–3240 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Blanchard H., Yu X., Collins P.M., Bum-Erdene K.: Galectin-3 inhibitors: a patent review (2008-present). Expert Opin. Ther. Pat. 24, 1053–1065 (2008)

    Article  Google Scholar 

  29. Téllez-Sanz R., García-Fuentes L., Vargas-Berenguel A.: Human galectin-3 selective and high affinity inhibitors. Present state and future perspectives. Curr. Med. Chem. 20, 2979–2990 (2013)

    Article  PubMed  Google Scholar 

  30. Yang R.-Y., Rabinovich G.A., Liu F.-T.: Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 10, e17 (2008)

    Article  PubMed  Google Scholar 

  31. Nakahara S., Raz A.: Biological Modulation by lectins and their ligands in tumor progression and metastasis. Anti Cancer Agents Med. Chem. 8, 22–36 (2008)

    Article  CAS  Google Scholar 

  32. Klyosov A.A., Traber P.G.: Galectins and disease implications for targeted therapeutics. ACS Symposium Series, American Chemical Society, Washington (2012)

    Book  Google Scholar 

  33. Radosavljevic G.D., Pantic J., Jovanovic I., Lukic M.L., Arsenijevic N.: The two faces of galectin-3: roles in various pathological conditions. Ser. J. Exp. Clin. Res. 17, 1–1 (2016)

    Article  Google Scholar 

  34. Giguére D., Patnam R., Bellefleur M.-A., St-Pierre C., Sato S., Roy R.: Carbohydrate triazoles and isoxazoles as inhibitors of galectins-1 and −3. Chem. Commun. 14, 2379–2381 (2006)

    Article  Google Scholar 

  35. Tejler J., Skogman F., Lefflerc H., Nilsson U.J.: Synthesis of galactose-mimicking 1H-(1,2,3-triazol-1-yl)- mannosides as selective galectin-3 and 9 N inhibitors. Carbohydr. Res. 342, 1869–1875 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Compagno D., Jaworski F.M., Gentilini L., Contrufo G., González Pérez I., Elola M.T., Pregi N., Rabinovich G.A., Laderach D.J.: Galectins: major signaling modulators inside and outside the cell. Curr. Mol. Med. 14, 630–651 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. Bum-Erdene K., Gagarinov I.A., Collins P.M., Winger M., Pearson A.G., Wilson J.C., Leffler H., Nilsson U.J., Grice I.D., Blanchard H.: Investigation into the feasibility of thioditaloside as a novel scaffold for galectin-3-specific inhibitors. ChemBiolChem. 14, 1331–1342 (2013)

    Article  CAS  Google Scholar 

  38. Salameh B.A., Cumpstey I., Sundin A., Leffler H., Nilsson U.J.: 1H-1,2,3-triazol-1-yl thiodigalactoside derivatives as high affinity galectin-3 inhibitors. Bioorg. Med. Chem. 18, 5367–5378 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. Fort S., Kim H.-S., Hindsgaul O.: Screening for galectin-3 inhibitors from synthetic lacto-N-biose libraries using microscale affinity chromatography coupled to mass spectrometry. J. Organomet. Chem. 71, 7146–7154 (2006)

    Article  CAS  Google Scholar 

  40. Öberg C., Blanchard H., Leffler H., Nilsson U.J.: Protein subtype-targeting through ligand epimerization: talose-selectivity of galectin-4 and galectin-8. Bioorg. Med. Chem. Lett. 18, 3691–3694 (2008)

    Article  PubMed  Google Scholar 

  41. Öberg C., Noresson A.-L., Leffler H., Nilsson U.J.: Synthesis of 3-amido-3-deoxy-beta-D-talopyranosides: all-cis-substituted pyranosides as lectin inhibitors. Tetrahedron. 67, 9164–9172 (2011)

    Article  Google Scholar 

  42. Collins P.M., Oberg C.T., Leffler H., Nilsson U.J., Blanchard H.: Taloside inhibitors of galectin-1 and galectin-3. Chem. Biol. Drug Des. 79, 339–346 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. van Hattum H., Branderhorst H.M., Moret E.E., Nilsson U.J., Leffler H., Pieters R.J.: Tuning the preference of thiodigalactoside- and lactosamine-based ligands to galectin-3 over galectin-1. J. Med. Chem. 56, 1350–1354 (2013)

    Article  PubMed  Google Scholar 

  44. Cumpstey I., Solomonsson E., Sundin A., Leffler H., Nilsson U.J.: Double affinity amplification of galectin–ligand interactions through arginine–arene interactions: synthetic, thermodynamic, and computational studies with aromatic diamido thiodigalactosides. Chem. Eur. J. 14, 4233–4245 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. Öberg C.T., Leffler H., Nilsson U.J.: Arginine binding motifs: design and synthesis of galactose-derived arginine tweezers as galectin-3 inhibitors. J. Med. Chem. 51, 2297–2301 (2008)

    Article  PubMed  Google Scholar 

  46. Öberg C.T., Leffler H., Nilsson U.J.: Inhibition of galectins with small molecules. Chimia. 65, 18–23 (2011)

    Article  PubMed  Google Scholar 

  47. Guigere D., Sato S., St-Pierre C., Sirois S., Roy R.: Aryl O- and S-galactosides and lactosides as specific inhibitors of human galectins-1 and −3: role of electrostatic potential at O-3. Bioorg. Med. Chem. Lett. 16, 1668–1672 (2006)

    Article  Google Scholar 

  48. Rauthu S.R., Shiao T.C., André S., Miller M.C., Madej E., Mayo K.H., Gabius H.-J., Roy R.: Defining the potential of aglycone modifications for affinity/selectivity enhancement against medicallyrelevant lectins: synthesis, activity screening, and HSQCBased NMR analysis. Chembiochem. 16, 126–139 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. Bianchet M.A., Ahmed H., Vasta G.R., Amzel L.M.: Soluble β-galactosyl-binding lectin (galectin) from toad ovary: crystallographic studies of two protein-sugar complexes. Proteins: Struct., Funct., Bioinf. 40, 378–388 (2002)

    Article  Google Scholar 

  50. Pieters R.J.: Inhibition and Detection of Galectins. ChemBioChem. 7, 721–728 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. van Scherpen zeel M., Moret E.E., Ballell L., Liskamp R.M.J., Nilsson U.J., Leffler H., Pieters R.J.: Synthesis and Evaluation of New Thiodigalactoside-Based Chemical Probes to Label Galectin-3. ChemBioChem. 10, 1724–1733 (2009)

    Article  Google Scholar 

  52. André S., Kövér K.E., Gabius H.-J., Szilágyi L.: Thio- and selenoglycosides as ligands for biomedically relevant lectins: Valency–activity correlations for benzene-based dithiogalactoside clusters and first assessment for (di)selenodigalactosides. Bioorg. Med. Chem. Lett. 25, 931–935 (2015)

    Article  PubMed  Google Scholar 

  53. Wagner G., Nuhn P.: Synthese von Selenoglykosiden mit Acetyl-glykosyl-isoselenuronium-bromiden. Arch. Pharm. 297, 461–473 (1964)

    Article  CAS  Google Scholar 

  54. Galante E., Geraci C., Sciuto S., Campo V.L., Carvalho I., Sesti-Costa R., Guedes P.M.M., Silva J.S., Hill L., Nepogodiev S.A., Field R.A.: Glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity. Tetrahedron. 67, 5902–5912 (2011)

    Article  CAS  Google Scholar 

  55. Campo, V. L., Carvalho, I.: Click chemistry applied to carbohydrate-based drug discovery click chemistry in Glycoscience. New developments and strategies. In: Witczak, Z. J., Bielski, R., (eds); Wiley; Vol. 1, Chapter 13, pp 325–358 (2013)

  56. Gouin S.G., Fernández J.M.G., Vanquelef E., Dupradeau F.-Y., Salomonsson E., Leffler H., Ortega-Muñoz M., Nilsson U.J., Kovensky J.: Multimeric lactoside “click clusters” as tools to investigate the effect of linker length in specific interactions with peanut lectin, galectin-1, and −3. Chembiochem. 11, 1430–1442 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. Tejler J., Tullberg E., Frejd T., Leffler H., Nilsson U.J.: Synthesis of multivalent lactose derivatives by 1,3-dipolar cycloadditions: selective galectin-1 inhibition. Carbohydr. Res. 341, 1353–1362 (2006)

    Article  CAS  PubMed  Google Scholar 

  58. Salomonsson E., Larumbe A., Tejler J., Tullberg E., Rydberg H., Sundin A., Khabut A., Frejd T., Lobsanov Y.D., Rini J.M., Nilsson U.J., Leffler H.: Monovalent interactions of galectin-1. Biochemistry. 49, 9518–9532 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. Mackeviča, J., Ostrovskis, P., Leffler, H., Nilsson, U. J., Rudovica, V., Viksna, A., Belyakov, S., Turks, M.: Synthesis of 1,2,3-triazole-linked galactohybrids and their inhibitory activities on galectins. ARKIVOC (iii) 90–112 (2014)

  60. Glinsky G.V., Mossine V.V., Price J.E., Bielenberg D., Glinsky V.V., Ananthaswamy H.N., Feather M.S.: Inhibition of colony formation in agarose of metastatic human breast carcinoma and melanoma cells by synthetic glycoamine analogs. Clin. Exp. Metastasis. 14, 253–267 (1996)

    CAS  PubMed  Google Scholar 

  61. Rabinovich G.A., Cumashi A., Bianco G.A., Ciavardelli D., Iurisci I., D’Egidio M., Piccolo E., Tinari N., Nifantiev N., Iacobelli S.: Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis. Glycobiology. 16, 210–220 (2006)

    Article  CAS  PubMed  Google Scholar 

  62. Dominique R., Liu B., Das S.K., Roy R.: Synthesis of `molecular Asterisks' via sequential cross-metathesis, Sonogashira and Cyclotrimerization Reactions. Synthesis. 6, 862–868 (2000)

    Article  Google Scholar 

  63. Roy R., Trono M.C., Giguère D.: Effects of linker rigidity and orientation of mannoside cluster for multivalent interactions with proteins. ACS Symp. Ser. 896, 137–150 (2005)

    Article  CAS  Google Scholar 

  64. Roy R., Trono M.C., Giguère D.: Synthesis of stable and selective inhibitors of human galectins-1 and −3. Bioorg. Med. Chem. 16, 7811–7823 (2008)

    Article  PubMed  Google Scholar 

  65. Vrasidas I., André S., Valentini P., Böck C., Lensch M., Kaltner H., Liskamp R.M.J., Gabius H.-J., Pieters R.J.: Rigidified multivalent lactose molecules and their interactions with mammalian galectins: a route to selective inhibitors. Org. Biomol. Chem. 1, 803–810 (2003)

    Article  CAS  PubMed  Google Scholar 

  66. Bian C.-F., Zhang Y., Sun H., Li D.-F., Wang D.-C.: Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. PLoS One. 6, (2011). doi:10.1371/journal.pone.0025007

  67. Wang H., Huang W., Orwenyo J., Banerjee A., Vasta G.R., Wang L.-X.: Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg. Med. Chem. 21, 2037–2044 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Campo V.L., Riul T.B., Carvalho I., Baruffi M.D.: Antibodies against mucin-based Glycopeptides affect Trypanosoma cruzi cell invasion and tumor cell viability. Chembiochem. 15, 1495–1507 (2014)

    Article  CAS  PubMed  Google Scholar 

  69. Zhao Q., Barclay M., Hilkens J., Guo X., Barrow H., Rhodes J.M., Yu L.-G.: Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol. Cancer. 9, (2010). doi:10.1186/1476–4598–9-154

  70. André S., Ortega P.J.C., Perez M.A., Roy R., Gabius H.-J.: Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology. 9, 1253–1261 (1999)

    Article  PubMed  Google Scholar 

  71. Michel A.K., Nangia-Makker P., Raz A., Cloninger M.J.: Lactose-functionalized dendrimers arbitrate the interaction of galectin-3/muc1 mediated cancer cellular aggregation. Chembiochem. 15, 2106–2112 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Böcker S., Laaf D., Elling L.: Galectin binding to neo-glycoproteins: LacDiNAc conjugated BSA as ligand for human galectin-3. Biomolecules. 5, 1671–1696 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li J., Li W., Jinga J., Yua W.W.: Influencing factors on the synthesis of magnetically responsive lipases. J. Mol. Catal. B Enzym. 101, 47–55 (2014)

    Article  Google Scholar 

  74. Rech C., Rosencrantz R.R., Křenek K., Pelantová H., Bojarová P., Römer C.E., Hanisch F.-G., Křen V., Elling L.: Combinatorial one-pot synthesis of poly-n-acetyllactosamine oligosaccharides with leloir-glycosyltransferases. Adv. Synth. Catal. 353, 2492–2500 (2011)

    Article  CAS  Google Scholar 

  75. Takenaka Y., Fukumori T., Raz A.: Galectin-3 and metastasis. Glycoconj. J. 19, 543–549 (2004)

    Article  PubMed  Google Scholar 

  76. Ballell L., van Scherpenzeel M., Buchalova K., Liskamp R.M.J., Pieters R.J.: A new chemical probe for the detection of the cancer-linked galectin-3. Org. Biomol. Chem. 4, 4387–4394 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support and fellowships from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo - Brazil) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Leiria Campo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campo, V.L., Marchiori, M.F., Rodrigues, L.C. et al. Synthetic glycoconjugates inhibitors of tumor-related galectin-3: an update. Glycoconj J 33, 853–876 (2016). https://doi.org/10.1007/s10719-016-9721-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9721-z

Keywords

Navigation