Skip to main content

Advertisement

Log in

A functional splice variant of the human Golgi CMP-sialic acid transporter

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The human Golgi Cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-Sia) transporter SLC35A1, a member of the nucleotide sugar transporter family, translocates CMP-Sia from the cytosol into the Golgi lumen where sialyltransferases use it as donor substrate for the synthesis of sialoglycoconjugates. In 2005, we reported a novel Congenital Disorder of Glycosylation (CDG) termed CDG-IIf or SLC35A1-CDG, characterized by macrothrombocytopenia, neutropenia and complete lack of the sialyl-Lex antigen (NeuAcα2-3Galβ1-4(Fucα1-3)GlcNAc-R) on polymorphonuclear cells. This disease was caused by the presence of inactive SLC35A1 alleles. It was also found that the SLC35A1 generates additional isoforms through alternative splicing. In this work, we demonstrate that one of the reported isoforms, the del177 with exon 6 skipping, is able to maintain sialylation in HepG2 cells submitted to wt knockdown and restore sialylation to normal levels in the Chinese Hamester Ovary (CHO) cell line Lec2 mutant deficient in CMP-Sia transport. The characteristics of the alternatively spliced protein are discussed as well as therapeutic implications of this finding in CDGs caused by mutations in nucleotide sugar transporters (NSTs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ac4ManNAz:

N-azidoacetylmannosamine

C/shRNA:

Control/shRNA plasmid

CDG:

Congenital Disorder of Glycosylation

CHO:

Chinese hamster ovary cell line

CMP-Sia:

Cytidine-5′-monophospho-N-acetylneuraminic acid

ER:

Endoplasmic Reticulum

MO:

Morpholino

MO-Scrambled:

Control morpholino oligo

MO-Carboxy:

Carboxyfluorescein morpholino oligo

MO-CMPTR6:

Morpholino directed against exon 6

NST:

Nucleotide sugar transporter

PCR:

Polymerase chain reaction

PNA:

Peanut agglutinin

RCA-I:

Ricinus communis agglutinin I

SiaNAz:

N-azidoacetyl sialic acid

SLC35A1/shRNA:

SLC35A1/shRNA plasmid

WGA:

Wheat germ agglutinin

References

  1. Martinez-Duncker I., Mollicone R., Codogno P., Oriol R.: The nucleotide-sugar transporter family: a phylogenetic approach. Biochimie. 85(3–4), 245–260 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Handford M., Rodriguez-Furlan C., Orellana A.: Nucleotide-sugar transporters: structure, function and roles in vivo. Braz. J. Med. Biol. Res. 39(9), 1149–1158 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Eckhardt M., Gotza B., Gerardy-Schahn R.: Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. J. Biol. Chem. 273(32), 20189–20195 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Caffaro C.E., Hirschberg C.B.: Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc. Chem. Res. 39(11), 805–812 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Mironov, A. A.,Pavelka, M.: The Golgi apparatus: state of the art 110 years after Camillo Golgi’s discovery. Springer, Wien; New York (2008)

  6. Furuichi T., Kayserili H., Hiraoka S., Nishimura G., Ohashi H., Alanay Y., Lerena J.C., Aslanger A.D., Koseki H., Cohn D.H., Superti-Furga A., Unger S., Ikegawa S.: Identification of loss-of-function mutations of SLC35D1 in patients with Schneckenbecken dysplasia, but not with other severe spondylodysplastic dysplasias group diseases. J. Med. Genet. 46(8), 562–568 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiraoka S., Furuichi T., Nishimura G., Shibata S., Yanagishita M., Rimoin D.L., Superti-Furga A., Nikkels P.G., Ogawa M., Katsuyama K., Toyoda H., Kinoshita-Toyoda A., Ishida N., Isono K., Sanai Y., Cohn D.H., Koseki H., Ikegawa S.: Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat. Med. 13(11), 1363–1367 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Mohamed M., Ashikov A., Guillard M., Robben J.H., Schmidt S., van den Heuvel B., de Brouwer A.P., Gerardy-Schahn R., Deen P.M., Wevers R.A., Lefeber D.J., Morava E.: Intellectual disability and bleeding diathesis due to deficient CMP–sialic acid transport. Neurology. 81(7), 681–687 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. Jones C., Denecke J., Strater R., Stolting T., Schunicht Y., Zeuschner D., Klumperman J., Lefeber D.J., Spelten O., Zarbock A., Kelm S., Strenge K., Haslam S.M., Luhn K., Stahl D., Gentile L., Schreiter T., Hilgard P., Beck-Sickinger A.G., Marquardt T., Wild M.K.: A novel type of macrothrombocytopenia associated with a defect in alpha2,3-sialylation. Am. J. Pathol. 179(4), 1969–1977 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Willig T.B., Breton-Gorius J., Elbim C., Mignotte V., Kaplan C., Mollicone R., Pasquier C., Filipe A., Mielot F., Cartron J.P., Gougerot-Pocidalo M.A., Debili N., Guichard J., Dommergues J.P., Mohandas N., Tchernia G.: Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sialyl-Lewis-X antigen in leukocytes–a new syndrome? Blood. 97(3), 826–828 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Duncker I., Dupre T., Piller V., Piller F., Candelier J.J., Trichet C., Tchernia G., Oriol R., Mollicone R.: Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood. 105(7), 2671–2676 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Stanley P., Siminovitch L.: Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet. 3(4), 391–405 (1977)

    Article  CAS  PubMed  Google Scholar 

  13. Riemersma M., Sandrock J., Boltje T.J., Bull C., Heise T., Ashikov A., Adema G.J., van Bokhoven H., Lefeber D.J.: Disease mutations in CMP-sialic acid transporter SLC35A1 result in abnormal alpha-dystroglycan O-mannosylation, independent from sialic acid. Hum. Mol. Genet. 24(8), 2241–2246 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Eckhardt M., Muhlenhoff M., Bethe A., Gerardy-Schahn R.: Expression cloning of the Golgi CMP-sialic acid transporter. Proc. Natl. Acad. Sci. U. S. A. 93(15), 7572–7576 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishida N., Ito M., Yoshioka S., Sun-Wada G.H., Kawakita M.: Functional expression of human golgi CMP-sialic acid transporter in the Golgi complex of a transporter-deficient Chinese hamster ovary cell mutant. J. Biochem. 124(1), 171–178 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Shin D.J., Kang J.Y., Kim Y.U., Yoon J.S., Choy H.E., Maeda Y., Kinoshita T., Hong Y.: Isolation of new CHO cell mutants defective in CMP-sialic acid biosynthesis and transport. Mol Cells. 22(3), 343–352 (2006)

    CAS  PubMed  Google Scholar 

  17. Briles E.B., Li E., Kornfeld S.: Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J. Biol. Chem. 252(3), 1107–1116 (1977)

    CAS  PubMed  Google Scholar 

  18. Parra M.K., Gee S., Mohandas N., Conboy J.G.: Efficient in vivo manipulation of alternative pre-mRNA splicing events using antisense morpholinos in mice. J. Biol. Chem. 286(8), 6033–6039 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Tyson-Capper A.J., Europe-Finner G.N.: Novel targeting of cyclooxygenase-2 (COX-2) pre-mRNA using antisense morpholino oligonucleotides directed to the 3′ acceptor and 5′ donor splice sites of exon 4: suppression of COX-2 activity in human amnion-derived WISH and myometrial cells. Mol. Pharmacol. 69(3), 796–804 (2006)

    CAS  PubMed  Google Scholar 

  20. Chang P.V., Chen X., Smyrniotis C., Xenakis A., Hu T., Bertozzi C.R., Wu P.: Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew Chem Int Ed Engl. 48(22), 4030–4033 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharon N., Lis H.: Lectins, 2nd edn. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  22. Patnaik S.K., Stanley P.: Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416, 159–182 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Erber W.N., Asbahr H., Meyer B., Herrmann R.P., Davies J.M.: Peanut agglutinin (lectin from Arachis hypogaea) binding to hemopoietic cells: an immunophenotypic study using a biotin streptavidin technique. Pathology. 24(3), 173–176 (1992)

    Article  CAS  PubMed  Google Scholar 

  24. Aoki K., Ishida N., Kawakita M.: Substrate recognition by UDP-galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid. J Biol Chem. 276(24), 21555–21561 (2001)

    CAS  PubMed  Google Scholar 

  25. Takeshima-Futagami T., Sakaguchi M., Uehara E., Aoki K., Ishida N., Sanai Y., Sugahara Y., Kawakita M.: Amino acid residues important for CMP-sialic acid recognition by the CMP-sialic acid transporter: analysis of the substrate specificity of UDP-galactose/CMP-sialic acid transporter chimeras. Glycobiology. 22(12), 1731–1740 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Maggioni A., von Itzstein M., Rodriguez Guzman I.B., Ashikov A., Stephens A.S., Haselhorst T., Tiralongo J.: Characterisation of CMP-sialic acid transporter substrate recognition. Chembiochem. 14(15), 1936–1942 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Beitz E. (2000) T(E)Xtopo: shaded membrane protein topology plots in LAT(E)X2epsilon. Bioinformatics. 16(11):1050-1051

  28. Zhao W., Chen T.L., Vertel B.M., Colley K.J.: The CMP-sialic acid transporter is localized in the medial-trans Golgi and possesses two specific endoplasmic reticulum export motifs in its carboxyl-terminal cytoplasmic tail. J. Biol. Chem. 281(41), 31106–31118 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Tusnady G.E., Simon I.: The HMMTOP transmembrane topology prediction server. Bioinformatics. 17(9), 849–850 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Eckhardt M, Gotza B, Gerardy-Schahn R.: Membrane topology of the mammalian CMP-sialic acid transporter. J Biol Chem. 274(13), 8779–87 (1999)

  31. Quiroga R., Trenchi A., Gonzalez Montoro A., Valdez Taubas J., Maccioni H.J.: Short transmembrane domains with high-volume exoplasmic halves determine retention of type II membrane proteins in the Golgi complex. J. Cell Sci. 126(Pt 23), 5344–5349 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Pasquier C., Promponas V.J., Palaios G.A., Hamodrakas J.S., Hamodrakas S.J.: A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng. 12(5), 381–385 (1999)

    Article  CAS  PubMed  Google Scholar 

  33. Chan K.F., Zhang P., Song Z.: Identification of essential amino acid residues in the hydrophilic loop regions of the CMP-sialic acid transporter and UDP-galactose transporter. Glycobiology. 20(6), 689–701 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Aoki K., Ishida N., Kawakita M.: Substrate recognition by nucleotide sugar transporters: further characterization of substrate recognition regions by analyses of UDP-galactose/CMP-sialic acid transporter chimeras and biochemical analysis of the substrate specificity of parental and chimeric transporters. J. Biol. Chem. 278(25), 22887–22893 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Oelmann S., Stanley P., Gerardy-Schahn R.: Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J. Biol. Chem. 276(28), 26291–26300 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. Saini P., Gaur N.A., Prasad R.: Chimeras of the ABC drug transporter Cdr1p reveal functional indispensability of transmembrane domains and nucleotide-binding domains, but transmembrane segment 12 is replaceable with the corresponding homologous region of the non-drug transporter Cdr3p. Microbiology. 152(Pt 5), 1559–1573 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Lim S.F., Lee M.M., Zhang P., Song Z.: The Golgi CMP-sialic acid transporter: a new CHO mutant provides functional insights. Glycobiology. 18(11), 851–860 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Q., Yin H., Camelliti P., Betts C., Moulton H., Lee H., Saleh A.F., Gait M.J., Wood M.J.: In vitro evaluation of novel antisense oligonucleotides is predictive of in vivo exon skipping activity for Duchenne muscular dystrophy. J Gene Med. 12(4), 354–364 (2010)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Alexandra Vincent from Gene Tools for her help in designing the antisense oligos morpholinos. We also acknowledge the support of the synthesis unit of the Instituto de Biotecnología-Universidad Nacional Autónoma de México in the synthesis of antisense oligos for PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Martínez-Duncker.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

Work carried out in our laboratory was supported by CONACYT grant 57157. RSM was supported by CONACYT scholarship [217256]. IMD and RSM were supported by the Latin American Society for Glycobiology and the ECOS-CONACYT-SEP-ANUIES grant M09-S03. Red Temática Glicociencia en Salud- CONACYT grant 253596.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas-Marín, R., Mollicone, R. & Martínez-Duncker, I. A functional splice variant of the human Golgi CMP-sialic acid transporter. Glycoconj J 33, 897–906 (2016). https://doi.org/10.1007/s10719-016-9697-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9697-8

Keywords

Navigation