Glycoconjugate Journal

, Volume 33, Issue 6, pp 985–994 | Cite as

Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library

  • Nobuo SugiuraEmail author
  • Thomas Mandel ClausenEmail author
  • Tatsumasa Shioiri
  • Tobias Gustavsson
  • Hideto Watanabe
  • Ali Salanti
Original Article


Placental malaria, a serious infection caused by the parasite Plasmodium falciparum, is characterized by the selective accumulation of infected erythrocytes (IEs) in the placentas of the pregnant women. Placental adherence is mediated by the malarial VAR2CSA protein, which interacts with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation of the N-acetyl-d-galactosamine residue is critical for supporting rVAR2 binding, whereas no other sulfate modifications showed effects. Interaction of rVAR2 with CS is highly correlated with the degree of C-4 sulfation and CS chain length. We confirmed that the minimum structure binding to rVAR2 is a tri-sulfated CSA dodecasaccharide, and found that a highly sulfated CSA eicosasaccharide is a more potent inhibitor of rVAR2 binding than the dodecasaccharides. These results suggest that CSA derivatives may potentially serve as targets in therapeutic strategies against placental malaria.


Chemo-enzymatic synthesis Chondroitin sulfate Enzyme-linked immunosorbent assay (ELISA) Placental malaria Surface plasmon resonance (SPR) VAR2SA 



chondroitin sulfate


d-glucuronic acid




degree of polymerization (number of monosaccharides)


degree of sulfation per disaccharide unit


degree of C-4 sulfation of GalNAc per disaccharide unit


infected erythrocyte by malaria parasite


placental malaria


Plasmodium falciparum erythrocyte membrane protein 1


a PfEMP1 protein


recombinant minimal CS-binding region of VAR2CSA


surface plasmon resonance


enzyme-linked immunosorbent assay



We thank Yoshimi Shintoku for expert technical assistance. This study was supported in part by a Supported Program for the Strategic Research Foundation at Private Universities 2011-2015 (S1101027) and Grants-in-Aid for Scientific Research (#23570176 to NS and #25293096 to HW) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. This study was also supported in part by the European Research Councils (ERC) through the MalOnco program (TMC and AS).

Supplementary material

10719_2016_9685_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1 mb)


  1. 1.
    WHO: World Malaria Report 2014. Geneva. (2014)
  2. 2.
    Mendis K., Sina B.J., Marchesini P., Carter R.: The neglected burden of plasmodium vivax malaria. Am.J.Trop. Med. Hyg. 64, 97–106 (2001)PubMedGoogle Scholar
  3. 3.
    Gamain B., Gratepanche S., Miller L.H., Baruch D.I.: Molecular basis for the dichotomy in plasmodium falciparum adhesion to CD36 and chondroitin sulfate a. Proc. Natl. Acad. Sci. U. S. A. 99, 10020–10024 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Smith J.D., Chitnis C.E., Craig A.G., Roberts D.J., Hudson-Taylor D.E., Peterson D.S., Pinches R., Newbold C.I., Miller L.H.: Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 82, 101–110 (1995)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Su X.Z., Heatwole V.M., Wertheimer S.P., Guinet F., Herrfeldt J.A., Peterson D.S., Ravetch J.A., Wellems T.E.: The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes. Cell. 82, 89–100 (1995)CrossRefPubMedGoogle Scholar
  6. 6.
    Kyes S., Horrocks P., Newbold C.: Antigenic variation at the infected red cell surface in malaria. Annu. Rev. Microbiol. 55, 673–707 (2001)CrossRefPubMedGoogle Scholar
  7. 7.
    Walter P.R., Garin Y., Blot P.: Placental pathologic changes in malaria. A histologic and ultrastructural study. Am. J. Pathol. 109, 330–342 (1982)PubMedPubMedCentralGoogle Scholar
  8. 8.
    Hviid L., Salanti A.: VAR2CSA and protective immunity against pregnancy-associated plasmodium falciparum malaria. Parasitology. 134, 1871–1876 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., Paulsen, I.T., James, K., Eisen, J.A., Rutherford, K., Salzberg, S.L., Craig, A., Kyes, S., Chan, M.S., Nene, V., Shallom, S.J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M.W., Vaidya, A.B., Martin, D.M., Fairlamb, A.H., Fraunholz, M.J., Roos, D.S., Ralph, S.A., McFadden, G.I., Cummings, L.M., Subramanian, G.M., Mungall, C., Venter, J.C., Carucci, D.J., Hoffman, S.L., Newbold, C., Davis, R.W., Fraser, C.M., Barrell, B.: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002)Google Scholar
  10. 10.
    Salanti A., Staalsoe T., Lavstsen T., Jensen A.T., Sowa M.P., Arnot D.E., Hviid L., Theander T.G.: Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49, 179–191 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    Smith J.D., Subramanian G., Gamain B., Baruch D.I., Miller L.H.: Classification of adhesive domains in the plasmodium falciparum erythrocyte membrane protein 1 family. Mol. Biochem. Parasitol. 110, 293–310 (2000)CrossRefPubMedGoogle Scholar
  12. 12.
    Dahlback M., Jorgensen L.M., Nielsen M.A., Clausen T.M., Ditlev S.B., Resende M., Pinto V.V., Arnot D.E., Theander T.G., Salanti A.: The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains. J. Biol. Chem. 286, 15908–15917 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clausen T.M., Christoffersen S., Dahlback M., Langkilde A.E., Jensen K.E., Resende M., Agerbaek M.O., Andersen D., Berisha B., Ditlev S.B., Pinto V.V., Nielsen M.A., Theander T.G., Larsen S., Salanti A.: Structural and functional insight into how the plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate a in placental malaria. J. Biol. Chem. 287, 23332–23345 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Achur R.N., Valiyaveettil M., Alkhalil A., Ockenhouse C.F., Gowda D.C.: Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans of the intervillous spaces that mediate the adherence of plasmodium falciparum-infected erythrocytes to the placenta. J. Biol. Chem. 275, 40344–40356 (2000)CrossRefPubMedGoogle Scholar
  15. 15.
    Alkhalil A., Achur R.N., Valiyaveettil M., Ockenhouse C.F., Gowda D.C.: Structural requirements for the adherence of plasmodium falciparum-infected erythrocytes to chondroitin sulfate proteoglycans of human placenta. J. Biol. Chem. 275, 40357–40364 (2000)CrossRefPubMedGoogle Scholar
  16. 16.
    Chai W., Beeson J.G., Lawson A.M.: The structural motif in chondroitin sulfate for adhesion of plasmodium falciparum-infected erythrocytes comprises disaccharide units of 4-O-sulfated and non-sulfated N-acetylgalactosamine linked to glucuronic acid. J. Biol. Chem. 277, 22438–22446 (2002)CrossRefPubMedGoogle Scholar
  17. 17.
    Esko J.D., Kimata K., Lindahl U.: Proteoglycans and sulfated Glycosaminoglycans. In: Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E. (eds.) Essentials of Glycobiology, pp. 229–248. Cold Spring Harbor, NY (2009)Google Scholar
  18. 18.
    Afratis N., Gialeli C., Nikitovic D., Tsegenidis T., Karousou E., Theocharis A.D., Pavao M.S., Tzanakakis G.N., Karamanos N.K.: Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 279, 1177–1197 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    Prydz K., Dalen K.T.: Synthesis and sorting of proteoglycans. J. Cell Sci. 113, 193–205 (2000)PubMedGoogle Scholar
  20. 20.
    Habuchi O.: Diversity and functions of glycosaminoglycan sulfotransferases. Biochim. Biophys. Acta. 1474, 115–127 (2000)CrossRefPubMedGoogle Scholar
  21. 21.
    Ninomiya T., Sugiura N., Tawada A., Sugimoto K., Watanabe H., Kimata K.: Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277, 21567–21575 (2002)CrossRefPubMedGoogle Scholar
  22. 22.
    Sugiura N., Shioiri T., Chiba M., Sato T., Narimatsu H., Kimata K., Watanabe H.: Construction of a chondroitin sulfate library with defined structures and analysis of molecular interactions. J. Biol. Chem. 287, 43390–43400 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sugiura N., Shimokata S., Minamisawa T., Hirabayashi J., Kimata K., Watanabe H.: Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants. Glycoconj. J. 25, 521–530 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    Salanti A., Clausen T.M., Agerbaek M.O., Al Nakouzi N., Dahlback M., Oo H.Z., Lee S., Gustavsson T., Rich J.R., Hedberg B.J., Mao Y., Barington L., Pereira M.A., LoBello J., Endo M., Fazli L., Soden J., Wang C.K., Sander A.F., Dagil R., Thrane S., Holst P.J., Meng L., Favero F., Weiss G.J., Nielsen M.A., Freeth J., Nielsen T.O., Zaia J., Tran N.L., Trent J., Babcook J.S., Theander T.G., Sorensen P.H., Daugaard M.: Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. Cancer Cell. 28, 500–514 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Toyoda H., Shinomiya K., Yamanashi S., Koshiishi I., Imanari T.: Microdetermination of unsaturated disaccharides produced from chondroitin sulfates in rabbit plasma by high performance liquid chromatography with fluorometric detection. Anal. Sci. 4, 381–384 (1988)CrossRefGoogle Scholar
  26. 26.
    Sugiura N., Shimokata S., Watanabe H., Kimata K.: MS analysis of chondroitin polymerization: effects of Mn2+ ions on the stability of UDP-sugars and chondroitin synthesis. Anal. Biochem. 365, 62–73 (2007)CrossRefPubMedGoogle Scholar
  27. 27.
    Shioiri T., Tsuchimoto T., Watanabe H., Sugiura S.: Sequence determination of synthesized chondroitin sulfate dodecasaccharides. Glycobiology. 26, 592–606 (2016)CrossRefPubMedGoogle Scholar
  28. 28.
    Beeson J.G., Chai W., Rogerson S.J., Lawson A.M., Brown G.V.: Inhibition of binding of malaria-infected erythrocytes by a tetradecasaccharide fraction from chondroitin sulfate a. Infect. Immun. 66, 3397–3402 (1998)PubMedPubMedCentralGoogle Scholar
  29. 29.
    Beeson J.G., Andrews K.T., Boyle M., Duffy M.F., Choong E.K., Byrne T.J., Chesson J.M., Lawson A.M., Chai W.: Structural basis for binding of plasmodium falciparum erythrocyte membrane protein 1 to chondroitin sulfate and placental tissue and the influence of protein polymorphisms on binding specificity. J. Biol. Chem. 282, 22426–22436 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    Avril M., Hathaway M.J., Cartwright M.M., Gose S.O., Narum D.L., Smith J.D.: Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia Pastoris. Malar. J. 8, 143 (2009)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nobuo Sugiura
    • 1
    Email author
  • Thomas Mandel Clausen
    • 2
    Email author
  • Tatsumasa Shioiri
    • 1
  • Tobias Gustavsson
    • 2
  • Hideto Watanabe
    • 1
  • Ali Salanti
    • 2
  1. 1.Institute for Molecular Science of MedicineAichi Medical UniversityNagakuteJapan
  2. 2.Centre for Medical Parasitology, Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations