Skip to main content

Advertisement

Log in

Site-specific characterization of N-linked glycosylation in human urinary glycoproteins and endogenous glycopeptides

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosylation is a very important post-translational modification involved in various cellular processes, such as cell adhesion, signal transduction and immune response. Urine is a rich source of glycoproteins and attractive biological fluid for biomarker discovery, owing to its availability, ease of collection, and correlation with pathophysiology of diseases. Although the urinary proteomics have been explored previously, the urinary glycoproteome characterization remains challenging requiring the development and optimization of analytical and bioinformatics methods for protein glycoprofiling. This study describes the high confident identification of 472 unique N-glycosylation sites covering 256 urinary glycoproteins. Besides, 202 unique N-glycosylation sites were identified in low molecular weight endogenous glycopeptides, which belong to 90 glycoproteins. Global site-specific characterization of the N-linked glycan heterogeneity was achieved by intact glycopeptide analysis, revealing 303 unique glycopeptides most of them displaying complex/hybrid glycans composed by sialic acid and fucose. These datasets consist in a valuable resource of glycoproteins and N-glycosylation sites found in healthy human urine that can be further explored in different disorders, in which the N-linked glycosylation may be aberrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Apweiler R., Hermjakob H., Sharon N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1473(1), 4–8 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Ferris S.P., Kodali V.K., Kaufman R.J.: Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Dis. Model. Mech. 7(3), 331–341 (2014). doi:10.1242/dmm.014589

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marth J.D., Grewal P.K.: Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8(11), 874–887 (2008). doi:10.1038/nri2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cummings R.D., Pierce J.M.: The challenge and promise of glycomics. Chem. Biol. 21(1), 1–15 (2014). doi:10.1016/j.chembiol.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crocker P.R., Feizi T.: Carbohydrate recognition systems: functional triads in cell-cell interactions. Curr. Opin. Struct. Biol. 6(5), 679–691 (1996)

    Article  CAS  PubMed  Google Scholar 

  6. Pinho S.S., Reis C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 15(9), 540–555 (2015). doi:10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  7. Fuster M.M., Esko J.D.: The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer. 5(7), 526–542 (2005). doi:10.1038/nrc1649

    Article  CAS  PubMed  Google Scholar 

  8. Dube D.H., Bertozzi C.R.: Glycans in cancer and inflammation–potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4(6), 477–488 (2005). doi:10.1038/nrd1751

    Article  CAS  PubMed  Google Scholar 

  9. Stowell S.R., Ju T., Cummings R.D.: Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015). doi:10.1146/annurev-pathol-012414-040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilgunn S., Conroy P.J., Saldova R., Rudd P.M., O'Kennedy R.J.: Aberrant PSA glycosylation–a sweet predictor of prostate cancer. Nat. Rev. Urol. 10(2), 99–107 (2013). doi:10.1038/nrurol.2012.258

    Article  CAS  PubMed  Google Scholar 

  11. Hauselmann I., Borsig L.: Altered tumor-cell glycosylation promotes metastasis. Frontiers in oncology. 4, 28 (2014). doi:10.3389/fonc.2014.00028

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y., Jiao J., Yang P., Lu H.: Mass spectrometry-based N-glycoproteomics for cancer biomarker discovery. Clin. Proteomics. 11(1), 18 (2014). doi:10.1186/1559-0275-11-18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thaysen-Andersen M., Packer N.H.: Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim. Biophys. Acta. 1844(9), 1437–1452 (2014). doi:10.1016/j.bbapap.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Kaji H., Saito H., Yamauchi Y., Shinkawa T., Taoka M., Hirabayashi J., Kasai K., Takahashi N., Isobe T.: Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21(6), 667–672 (2003). doi:10.1038/nbt829

    Article  CAS  PubMed  Google Scholar 

  15. Morelle W., Faid V., Chirat F., Michalski J.C.: Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods Mol. Biol. 534, 5–21 (2009). doi:10.1007/978-1-59745-022-5_1

    CAS  PubMed  Google Scholar 

  16. Jensen P.H., Karlsson N.G., Kolarich D., Packer N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012). doi:10.1038/nprot.2012.063

    Article  CAS  PubMed  Google Scholar 

  17. Woo C.M., Iavarone A.T., Spiciarich D.R., Palaniappan K.K., Bertozzi C.R.: Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat. Methods. 12(6), 561–567 (2015). doi:10.1038/nmeth.3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun S., Shah P., Eshghi S.T., Yang W., Trikannad N., Yang S., Chen L., Aiyetan P., Hoti N., Zhang Z., Chan D.W., Zhang H.: Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat. Biotechnol. 34(1), 84–88 (2016). doi:10.1038/nbt.3403

    Article  CAS  PubMed  Google Scholar 

  19. Medzihradszky K.F., Kaasik K., Chalkley R.J.: Tissue-specific glycosylation at the glycopeptide level. Mol. Cell. Proteomics: MCP. 14(8), 2103–2110 (2015). doi:10.1074/mcp.M115.050393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoffmann M., Marx K., Reichl U., Wuhrer M., Rapp E.: Site-specific O-glycosylation analysis of human blood plasma proteins. Mol. Cell. Proteomics: MCP. 15(2), 624–641 (2016). doi:10.1074/mcp.M115.053546

    Article  CAS  PubMed  Google Scholar 

  21. Parker B.L., Thaysen-Andersen M., Solis N., Scott N.E., Larsen M.R., Graham M.E., Packer N.H., Cordwell S.J.: Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J. Proteome Res. 12(12), 5791–5800 (2013). doi:10.1021/pr400783j

    Article  CAS  PubMed  Google Scholar 

  22. Stavenhagen K., Hinneburg H., Thaysen-Andersen M., Hartmann L., Varon Silva D., Fuchser J., Kaspar S., Rapp E., Seeberger P.H., Kolarich D.: Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J. Mass Spectrom.: JMS. 48(6), 627–639 (2013). doi:10.1002/jms.3210

    Article  CAS  PubMed  Google Scholar 

  23. Hagglund P., Bunkenborg J., Elortza F., Jensen O.N., Roepstorff P.: A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res. 3(3), 556–566 (2004)

    Article  PubMed  Google Scholar 

  24. Mysling S., Palmisano G., Hojrup P., Thaysen-Andersen M.: Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal. Chem. 82(13), 5598–5609 (2010). doi:10.1021/ac100530w

    Article  CAS  PubMed  Google Scholar 

  25. Li, X., Jiang, J., Zhao, X., Wang, J., Han, H., Zhao, Y., Peng, B., Zhong, R., Ying, W., Qian, X.: N-glycoproteome analysis of the secretome of human metastatic hepatocellular carcinoma cell lines combining hydrazide chemistry, HILIC enrichment and mass spectrometry. PloS one 8(12), e81921 (2013). doi:10.1371/journal.pone.0081921

  26. Melo-Braga M.N., Schulz M., Liu Q., Swistowski A., Palmisano G., Engholm-Keller K., Jakobsen L., Zeng X., Larsen M.R.: Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol. Cell. Proteomics: MCP. 13(1), 311–328 (2014). doi:10.1074/mcp.M112.026898

    Article  PubMed  Google Scholar 

  27. Pompach P., Chandler K.B., Lan R., Edwards N., Goldman R.: Semi-automated identification of N-glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase LC-MS/MS, and glycan database search. J. Proteome Res. 11(3), 1728–1740 (2012). doi:10.1021/pr201183w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng K., Chen R., Seebun D., Ye M., Figeys D., Zou H.: Large-scale characterization of intact N-glycopeptides using an automated glycoproteomic method. J. Proteome. 110, 145–154 (2014). doi:10.1016/j.jprot.2014.08.006

    Article  CAS  Google Scholar 

  29. Wuhrer M., de Boer A.R., Deelder A.M.: Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28(2), 192–206 (2009). doi:10.1002/mas.20195

    Article  CAS  PubMed  Google Scholar 

  30. Yu Y.Q., Gilar M., Kaska J., Gebler J.C.: A rapid sample preparation method for mass spectrometric characterization of N-linked glycans. Rapid Commun. Mass Spectrom.: RCM. 19(16), 2331–2336 (2005). doi:10.1002/rcm.2067

    Article  CAS  PubMed  Google Scholar 

  31. Shimwell N.J., Bryan R.T., Wei W., James N.D., Cheng K.K., Zeegers M.P., Johnson P.J., Martin A., Ward D.G.: Combined proteome and transcriptome analyses for the discovery of urinary biomarkers for urothelial carcinoma. Br. J. Cancer. 108(9), 1854–1861 (2013). doi:10.1038/bjc.2013.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang H., Cao J., Li L., Liu Y., Zhao H., Li N., Li B., Zhang A., Huang H., Chen S., Dong M., Yu L., Zhang J., Chen L.: Identification of urine protein biomarkers with the potential for early detection of lung cancer. Sci. Rep. 5, 11805 (2015). doi:10.1038/srep11805

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu J., Chen Y.D., Gu W.: Urinary proteomics as a novel tool for biomarker discovery in kidney diseases. J. Zhejiang Univ. Sci. B. 11(4), 227–237 (2010). doi:10.1631/jzus.B0900327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomas, C.E., Sexton, W., Benson, K., Sutphen, R., Koomen, J.: Urine collection and processing for protein biomarker discovery and quantification. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 19(4), 953–959 (2010). doi:10.1158/1055-9965.EPI-10-0069

  35. Overbye A., Skotland T., Koehler C.J., Thiede B., Seierstad T., Berge V., Sandvig K., Llorente A.: Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget. 6(30), 30357–30376 (2015). doi:10.18632/oncotarget.4851

    PubMed  PubMed Central  Google Scholar 

  36. Haj-Ahmad T.A., Abdalla M.A., Haj-Ahmad Y.: Potential urinary protein biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J. Cancer. 5(2), 103–114 (2014). doi:10.7150/jca.6890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jedinak A., Curatolo A., Zurakowski D., Dillon S., Bhasin M.K., Libermann T.A., Roy R., Sachdev M., Loughlin K.R., Moses M.A.: Novel non-invasive biomarkers that distinguish between benign prostate hyperplasia and prostate cancer. BMC Cancer. 15, 259 (2015). doi:10.1186/s12885-015-1284-z

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang L., Li F., Sun W., Wu S., Wang X., Zhang L., Zheng D., Wang J., Gao Y.: Concanavalin A-captured glycoproteins in healthy human urine. Mol. Cell. Proteomics: MCP. 5(3), 560–562 (2006). doi:10.1074/mcp.D500013-MCP200

    Article  CAS  PubMed  Google Scholar 

  39. Yang N., Feng S., Shedden K., Xie X., Liu Y., Rosser C.J., Lubman D.M., Goodison S.: Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification. Clinical cancer research: an official journal of the American Association for Cancer Research. 17(10), 3349–3359 (2011). doi:10.1158/1078-0432.CCR-10-3121

    Article  CAS  Google Scholar 

  40. Saraswat M., Joenvaara S., Musante L., Peltoniemi H., Holthofer H., Renkonen R.: N-linked (N-) glycoproteomics of urinary exosomes. [Corrected]. Mol. Cell. Proteomics: MCP. 14(2), 263–276 (2015). doi:10.1074/mcp.M114.040345

    Article  CAS  PubMed  Google Scholar 

  41. Halim A., Nilsson J., Ruetschi U., Hesse C., Larson G.: : Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Mol. Cell. Proteomics: MCP. 11(4), M111 013649 (2012). doi:10.1074/mcp.M111.013649

    Article  PubMed  Google Scholar 

  42. Bern, M., Kil, Y.J., Becker, C.: Byonic: advanced peptide and protein identification software. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis. .. [et al.] Chapter 13, Unit13 20 (2012). doi:10.1002/0471250953.bi1320s40

  43. Bern M., Cai Y., Goldberg D.: Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. Anal. Chem. 79(4), 1393–1400 (2007). doi:10.1021/ac0617013

    Article  CAS  PubMed  Google Scholar 

  44. Bern M.W., Kil Y.J.: Two-dimensional target decoy strategy for shotgun proteomics. J. Proteome Res. 10(12), 5296–5301 (2011). doi:10.1021/pr200780j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cox J., Mann M.: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26(12), 1367–1372 (2008). doi:10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  46. Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M.: Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10(4), 1794–1805 (2011). doi:10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  47. Palmisano G., Melo-Braga M.N., Engholm-Keller K., Parker B.L., Larsen M.R.: Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J. Proteome Res. 11(3), 1949–1957 (2012). doi:10.1021/pr2011268

    Article  CAS  PubMed  Google Scholar 

  48. Breuer K., Foroushani A.K., Laird M.R., Chen C., Sribnaia A., Lo R., Winsor G.L., Hancock R.E., Brinkman F.S., Lynn D.J.: InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res. 41(Database issue), D1228–D1233 (2013). doi:10.1093/nar/gks1147

    Article  CAS  PubMed  Google Scholar 

  49. Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., Clark N.R., Ma'ayan A.: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 14, 128 (2013). doi:10.1186/1471-2105-14-128

    Article  Google Scholar 

  50. Su A.I., Wiltshire T., Batalov S., Lapp H., Ching K.A., Block D., Zhang J., Soden R., Hayakawa M., Kreiman G., Cooke M.P., Walker J.R., Hogenesch J.B.: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. U. S. A. 101(16), 6062–6067 (2004). doi:10.1073/pnas.0400782101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim M.S., Pinto S.M., Getnet D., Nirujogi R.S., Manda S.S., Chaerkady R., Madugundu A.K., Kelkar D.S., Isserlin R., Jain S., Thomas J.K., Muthusamy B., Leal-Rojas P., Kumar P., Sahasrabuddhe N.A., Balakrishnan L., Advani J., George B., Renuse S., Selvan L.D., Patil A.H., Nanjappa V., Radhakrishnan A., Prasad S., Subbannayya T., Raju R., Kumar M., Sreenivasamurthy S.K., Marimuthu A., Sathe G.J., Chavan S., Datta K.K., Subbannayya Y., Sahu A., Yelamanchi S.D., Jayaram S., Rajagopalan P., Sharma J., Murthy K.R., Syed N., Goel R., Khan A.A., Ahmad S., Dey G., Mudgal K., Chatterjee A., Huang T.C., Zhong J., Wu X., Shaw P.G., Freed D., Zahari M.S., Mukherjee K.K., Shankar S., Mahadevan A., Lam H., Mitchell C.J., Shankar S.K., Satishchandra P., Schroeder J.T., Sirdeshmukh R., Maitra A., Leach S.D., Drake C.G., Halushka M.K., Prasad T.S., Hruban R.H., Kerr C.L., Bader G.D., Iacobuzio-Donahue C.A., Gowda H., Pandey A.: A draft map of the human proteome. Nature. 509(7502), 575–581 (2014). doi:10.1038/nature13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shah P., Wang X., Yang W., Toghi Eshghi S., Sun S., Hoti N., Chen L., Yang S., Pasay J., Rubin A., Zhang H.: Integrated proteomic and glycoproteomic analyses of prostate cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Mol. Cell. Proteomics: MCP. 14(10), 2753–2763 (2015). doi:10.1074/mcp.M115.047928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao W.N., Yau L.F., Liu L., Zeng X., Chen D.C., Jiang M., Liu J., Wang J.R., Jiang Z.H.: Microfluidic Chip-LC/MS-based Glycomic analysis revealed distinct N-glycan profile of rat serum. Sci. Rep. 5, 12844 (2015). doi:10.1038/srep12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Campbell M.P., Peterson R., Mariethoz J., Gasteiger E., Akune Y., Aoki-Kinoshita K.F., Lisacek F., Packer N.H.: UniCarbKB: building a knowledge platform for glycoproteomics. Nucleic Acids Res. 42(Database issue), D215–D221 (2014). doi:10.1093/nar/gkt1128

    Article  CAS  PubMed  Google Scholar 

  55. Eckhard U., Huesgen P.F., Schilling O., Bellac C.L., Butler G.S., Cox J.H., Dufour A., Goebeler V., Kappelhoff R., Keller U.A., Klein T., Lange P.F., Marino G., Morrison C.J., Prudova A., Rodriguez D., Starr A.E., Wang Y., Overall C.M.: Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol.: journal of the International Society for Matrix Biology. 49, 37–60 (2016). doi:10.1016/j.matbio.2015.09.003

    Article  CAS  Google Scholar 

  56. Tucher J., Linke D., Koudelka T., Cassidy L., Tredup C., Wichert R., Pietrzik C., Becker-Pauly C., Tholey A.: LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J. Proteome Res. 13(4), 2205–2214 (2014). doi:10.1021/pr401135u

    Article  CAS  PubMed  Google Scholar 

  57. Prudova A., auf dem Keller U., Butler G.S., Overall C.M.: Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics: MCP. 9(5), 894–911 (2010). doi:10.1074/mcp.M000050-MCP201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schilling O., Overall C.M.: Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat. Biotechnol. 26(6), 685–694 (2008). doi:10.1038/nbt1408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CNPq (GP 441878/2014-8) and FAPESP (GP: 2014/06863-3), Rebeca Kawahara is supported the Capes, PNPD, and FAPESP (2015/02866-0). Joyce Saad is supported by the “Programa Unificado de Bolsas de Estudo”. The facility Biomass at CEFAP-USP is acknowledged for the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Palmisano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplemental Figure 1

Tissue localization enrichment analysis in the list of identified urinary glycoproteins (PDF 36 kb)

Supplemental Figure 2

Manual verification of the Y1 + 16 Da in the MS/MS spectra from intact glycopeptides identified with NeuGc. The Y1 ion +16 Da is indicated by the red arrow. (PDF 248 kb)

Supplemental Figure 3

Charge state distribution of intact glycopeptides identified in each glycan composition class. The percentage was calculated based on the number of glycopeptides with charge +2, +3, +4 and >4 in each class to the total number of glycopeptides identified in each class. (PDF 15 kb)

Supplemental Figure 4

Overlap between the number of peptide sequences identified in the formerly N-linked peptides generated after PNGase F treatment and intact glycopeptides (with 0 % FDR) identified using Byonic software. (PDF 12 kb)

Supplemental Figure 5

Examples of annotated spectra for N-linked glycopeptides identified in urinary glycoproteins (PDF 62 kb)

Supplemental Figure 6

Sequence recognition motif in endogenous N-glycopeptides. N-glycosylation consensus sequence as derived using MotifX. A) MotifX analysis centered on the NxT glycosylation motif. B) MotifX analysis centered on the NxS glycosylation motif. C) Sequence2logo analysis obtained using the endogenous peptide sequences with six aminoacids length. (PDF 93 kb)

ESM 7

(XLSX 1076 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawahara, R., Saad, J., Angeli, C.B. et al. Site-specific characterization of N-linked glycosylation in human urinary glycoproteins and endogenous glycopeptides. Glycoconj J 33, 937–951 (2016). https://doi.org/10.1007/s10719-016-9677-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9677-z

Keywords

Navigation