Skip to main content

Synthetic arabinomannan glycolipids impede mycobacterial growth, sliding motility and biofilm structure

Abstract

Mycobacterium has evolved distinct cell wall and strategies such as biofilm formation, which helps it to survive in hostile conditions. We have reported previously that arabinofuranoside containing glycolipids exhibit inhibition activities against the above functions of the mycobacterial species M. smegmatis. In search for activities mediated by oligosaccharide glycolipids, we report herein the inhibitory activities of a linear and a branched pentasaccharides having arabinan and mannan moieties. In the presence of the pentasaccharide glycolipids, a significant reduction in mycobacterial growth is observed, concomitant with reductions in sliding motility and colonization through biofilm formation, at the optimal glycolipid concentrations of 50–100 μg mL−1. Especially the biofilm coat is ruptured by ~80–85 % in the presence of glycolipids. Pentasaccharides alone without the lipidic chain show only a weak effect. The glycolipids are non-toxic, as evaluated through their effect on RBCs. Analysis of the mycolic acid profile of glycolipid treated biofilm shows that α- and epoxy mycolic acids are downregulated significantly, in comparison to glycolipid untreated biofilms. Lipidomics profile analysis through mass spectrometry further reveals profound downregulation of phosphatidylinositol mannosides, acylatedphosphoglycerols and mycolic acid family, namely, keto-, alpha- and methoxymycolic acids.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

LAM:

Lipoarabinomannan

ESI:

Electrospray ionization

RBC:

Red blood cells

GPL:

Glycopeptidolipids

GL:

Glycolipids

O.D.:

Optical density

PBS:

Phosphate-buffered saline

SDS:

Sodium dodecyl sulphate

FAME:

Fatty acid methyl ester

MAME:

Mycolic acid methyl ester

References

  1. Aujoulat, F., Roger, F., Bourdier, A., Lotthé, A., Lamy, B., Marchandin, H., Jumas-Bilak, E.: From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes 3(2), 191 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. WHO report: WHO/HTM/TB/2009.411. World Health Organization, Geneva (2009)

  3. Bassetti, M., Righi, E.: Multidrug-resistant bacteria: what is the threat? ASH Education Program Book. (1), 428–432 (2013)

  4. Syal, K., Maiti, K., Naresh, K., Chatterji, D., Jayaraman, N.: Synthetic glycolipids and (p)ppGpp analogs: development of inhibitors for mycobacterial growth, biofilm and stringent response. Adv. Exp. Med. Biol. 842, 309–327 (2015)

    PubMed  Article  Google Scholar 

  5. Alderwick, L.J., Harrison, J., Lloyd, G.S., Birch, H.L.: The mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. (2015)

  6. Daffe, M., Draper, P.: The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998)

    CAS  PubMed  Article  Google Scholar 

  7. Daffe, M.: The cell envelope of tubercle bacilli. Tuberculosis (Edinb) (2015). doi:10.1016/j.tube.2015.02.024

    Google Scholar 

  8. Schorey, J.S., Sweet, L.: The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18(11), 832–841 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Branda, S.S., Vik, S., Friedman, L., Kolter, R.: Biofilms: the matrix revisited. Trends Microbiol. 13(1), 20–26 (2005)

    CAS  PubMed  Article  Google Scholar 

  10. Penesyan, A., Gillings, M., Paulsen, I.T.: Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20(4), 5286–5298 (2015)

    CAS  PubMed  Article  Google Scholar 

  11. Bahar, A.A., Liu, Z., Garafalo, M., Kallenbach, N., Ren, D.: Controlling persister and biofilm cells of gram-negative bacteria with a new 1,3,5-triazine derivative. Pharm. (Basel) 8(4), 696–710 (2015)

    CAS  Article  Google Scholar 

  12. Sharma, I.M., Petchiappan, A., Chatterji, D.: Quorum sensing and biofilm formation in mycobacteria: role of c-di-GMP and methods to study this second messenger. IUBMB Life 66(12), 823–834 (2014)

    CAS  PubMed  Article  Google Scholar 

  13. Chavez de Paz, L.E., Lemos, J.A., Wickstrom, C., Sedgley, C.M.: Role of (p)ppGpp in biofilm formation by Enterococcus faecalis. Appl. Environ. Microbiol. 78(5), 1627–1630 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Cotter, P.A., Stibitz, S.: c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10(1), 17–23 (2007)

    CAS  PubMed  Article  Google Scholar 

  15. Karaolis, D.K., Rashid, M.H., Chythanya, R., Luo, W., Hyodo, M., Hayakawa, Y.: c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob. Agents Chemother. 49(3), 1029–1038 (2005)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Syal, K., Joshi, H., Chatterji, D., Jain, V.: Novel pppGpp binding site at the C‐terminal region of the Rel enzyme from Mycobacterium smegmatis. FEBS J. 282(19), 3773–3785 (2015)

    CAS  PubMed  Article  Google Scholar 

  17. Syal, K., Chatterji, D.: Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo‐labeling and mass spectral studies. Genes Cells 20(12), 1006–1016 (2015)

    CAS  PubMed  Article  Google Scholar 

  18. Naresh, K., Bharati, B.K., Jayaraman, N., Chatterji, D.: Synthesis and mycobacterial growth inhibition activities of bivalent and monovalent arabinofuranoside containing alkyl glycosides. Org. Biomol. Chem. 6(13), 2388–2393 (2008)

    CAS  PubMed  Article  Google Scholar 

  19. Naresh, K., Avaji, P.G., Maiti, K., Bharati, B.K., Syal, K., Chatterji, D., Jayaraman, N.: Synthesis of beta-arabinofuranoside glycolipids, studies of their binding to surfactant protein-A and effect on sliding motilities of M. smegmatis. Glycoconj. J. 29(2–3), 107–118 (2012)

    CAS  PubMed  Article  Google Scholar 

  20. Naresh, K., Bharati, B.K., Avaji, P.G., Chatterji, D., Jayaraman, N.: Synthesis, biological studies of linear and branched arabinofuranoside-containing glycolipids and their interaction with surfactant protein A. Glycobiology 21(9), 1237–1254 (2011)

    CAS  PubMed  Article  Google Scholar 

  21. Bharati, B.K., Naresh, K., Chatterji, D., Jayaraman, N.: Synthetic arabinan, arabinomannan glycolipids and their effects on mycobacterial growth, sliding motility and biofilm formation. Carbohydr. Chemi. R. Soc. Chem. 39, 58–77 (2013)

    CAS  Google Scholar 

  22. Naresh, K., Bharati, B.K., Avaji, P.G., Jayaraman, N., Chatterji, D.: Synthetic arabinomannan glycolipids and their effects on growth and motility of the Mycobacterium smegmatis. Org. Biomol. Chem. 8(3), 592–599 (2010)

    CAS  PubMed  Article  Google Scholar 

  23. Fraser-Reid, B., Lu, J., Jayaprakash, K.N., López, J.C.: Synthesis of a 28-mer oligosaccharide core of Mycobacterial lipoarabinomannan (LAM) requires only two n-pentenyl orthoester progenitors. Tetrahedron Asymmetry 17(17), 2449–2463 (2006)

    CAS  Article  Google Scholar 

  24. Holemann, A., Stocker, B.L., Seeberger, P.H.: Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis. J. Org. Chem. 71(21), 8071–8088 (2006)

    PubMed  Article  Google Scholar 

  25. Ishiwata, A., Ito, Y.: Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall. J. Am. Chem. Soc. 133(7), 2275–2291 (2011)

    CAS  PubMed  Article  Google Scholar 

  26. Pozsgay, V.: A new strategy in oligosaccharide synthesis using lipophilic protecting groups: synthesis of a tetracosasaccharide. Tetrahedron Asymmetry 11(1), 151–172 (2000)

    CAS  Article  Google Scholar 

  27. Crick, D.C., Brennan, P.J.: Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. In: Daffé, M., Reyrat, J.-M. (eds.) The mycobacterial cell envelope, pp. 25–40. ASM Press, Washington, DC (2008)

    Chapter  Google Scholar 

  28. Schmidt, R.R., Grundler, G.: α-Linked Disaccharides from O-(β-D-Glycopyranosyl) Trichloroacetimidates using Trimethylsilyl Trifluoromethanesulfonate as Catalyst. Angew. Chem. Int. Ed. Engl. 21(10), 781–782 (1982)

    Article  Google Scholar 

  29. Martinez, A., Torello, S., Kolter, R.: Sliding motility in mycobacteria. J. Bacteriol. 181(23), 7331–7338 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Recht, J., Martinez, A., Torello, S., Kolter, R.: Sliding motility and biofilm formation in mycobacteria. Acta Cient. Venez. 52(Suppl 1), 45–49 (2001)

    PubMed  Google Scholar 

  31. Nessar, R., Reyrat, J.M., Davidson, L.B., Byrd, T.F.: Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response. Microbiology 157(Pt 4), 1187–1195 (2011)

    CAS  PubMed  Article  Google Scholar 

  32. Belisle, J.T., Klaczkiewicz, K., Brennan, P.J., Jacobs Jr., W.R., Inamine, J.M.: Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J. Biol. Chem. 268(14), 10517–10523 (1993)

    CAS  PubMed  Google Scholar 

  33. Recht, J., Martinez, A., Torello, S., Kolter, R.: Genetic analysis of sliding motility in Mycobacterium smegmatis. J. Bacteriol. 182(15), 4348–4351 (2000)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Recht, J., Kolter, R.: Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J. Bacteriol. 183(19), 5718–5724 (2001)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Beloin, C., Roux, A., Ghigo, J.M.: Escherichia coli biofilms. Curr. Top. Microbiol. Immunol. 322, 249–289 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs Jr., W.R., Hatfull, G.F.: GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123(5), 861–873 (2005)

    CAS  PubMed  Article  Google Scholar 

  37. Ojha, A.K., Baughn, A.D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs Jr., W.R., Hatfull, G.F.: Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69(1), 164–174 (2008)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Ojha, A.K., Trivelli, X., Guerardel, Y., Kremer, L., Hatfull, G.F.: Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J. Biol. Chem. 285(23), 17380–17389 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Alibaud, L., Alahari, A., Trivelli, X., Ojha, A.K., Hatfull, G.F., Guerardel, Y., Kremer, L.: Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG_1351) in CIS-cyclopropanation of alpha-mycolates. J. Biol. Chem. 285(28), 21698–21707 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40. Maya-Hoyos, M., Leguizamon, J., Marino-Ramirez, L., Soto, C.Y.: Sliding motility, biofilm formation, and glycopeptidolipid production in mycobacterium Colombiense strains. Biomed. Res. Int. 419549, (2015)

  41. Fujiwara, N., Ohara, N., Ogawa, M., Maeda, S., Naka, T., Taniguchi, H., Yamamoto, S., Ayata, M.: Glycopeptidolipid of mycobacterium smegmatis J15cs affects morphology and survival in host cells. PLoS One 10(5), e0126813 (2015)

    PubMed  PubMed Central  Article  Google Scholar 

  42. Villeneuve, C., Gilleron, M., Maridonneau-Parini, I., Daffe, M., Astarie-Dequeker, C., Etienne, G.: Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J. Lipid Res. 46(3), 475–483 (2005)

    CAS  PubMed  Article  Google Scholar 

  43. Richards, J.J., Melander, C.: Controlling bacterial biofilms. Chembiochem 10(14), 2287–2294 (2009)

    CAS  PubMed  Article  Google Scholar 

  44. Marcinkiewicz, J., Strus, M., Pasich, E.: Antibiotic resistance: a “dark side” of biofilm associated chronic infections. Pol. Arch. Med. Wewn. 123(6), 309–313 (2013)

    PubMed  Google Scholar 

  45. Ehud, A., Shiri, N.-V., Eyal, G., Boris, K., Rivka, G., Daphna, F.-K., Eyal, K., Yehuda, C., Yoav, B.: Novel rat model of methicillin-resistant Staphylococcus aureus-infected silicone breast implants: a study of biofilm pathogenesis. Plast. Reconstr. Surg. 131(2), 205–214 (2013)

    Article  Google Scholar 

  46. Sakamoto, A., Terui, Y., Yamamoto, T., Kasahara, T., Nakamura, M., Tomitori, H., Yamamoto, K., Ishihama, A., Michael, A.J., Igarashi, K., Kashiwagi, K.: Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int. J. Biochem. Cell Biol. 44(11), 1877–1886 (2012)

    CAS  PubMed  Article  Google Scholar 

  47. Richards, J.P., Ojha, A.K.: Mycobacterial biofilms. Microbiol. Spectrum 2(5), MGM2-0004-2013 (2014)

  48. Islam, M.S., Richards, J.P., Ojha, A.K.: Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms. Expert Rev. Anti-Infect. Ther. 10(9), 1055–1066 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Rombouts, Y., Brust, B., Ojha, A.K., Maes, E., Coddeville, B., Elass-Rochard, E., Kremer, L., Guerardel, Y.: Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to mycolyl-arabinogalactan-peptidoglycan metabolism. J. Biol. Chem. 287(14), 11060–11069 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Mathew, R., Mukherjee, R., Balachandar, R., Chatterji, D.: Deletion of the rpoZ gene, encoding the omega subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis. Microbiology 152(Pt 6), 1741–1750 (2006)

    CAS  PubMed  Article  Google Scholar 

  51. Gidden, J., Denson, J., Liyanage, R., Ivey, D.M., Lay, J.O.: Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. Int. J. Mass Spectrom. 283(1–3), 178–184 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Riobó, P., Paz, B., Franco, J.M., Vázquez, J.A., Murado, M.A.: Proposal for a simple and sensitive haemolytic assay for palytoxin: toxicological dynamics, kinetics, ouabain inhibition and thermal stability. Harmful Algae 7(4), 415–429 (2008)

  53. Krog-Jensen, C., Oscarson, S.: Synthesis of d-fructofuranosides using thioglycosides as glycosyl donors. J. Org. Chem. 61, 1234–1238 (1996) Reference [53] was provided in the reference list; however, this was not mentioned or cited in the manuscript. As a rule, all references given in the list of references should be cited in the main body. Please provide its citation in the body text.The following reorganization of the references is requested:(i) Reference 53 is to be cited as reference 50.(ii) Reference 50 is to be cited as reference 51.(iii) Reference 51 is to be cited as reference 52.(iv) Reference 52 is to be cited as reference 53.

Download references

Acknowledgment

We are grateful to the Department of Science and Technology, New Delhi, for a financial support of this work. Council of Scientific and Industrial Research, New Delhi, is acknowledged for a research fellowship to KS and KGM. We thank Rajesh from Brukers and Sunita from Proteomics Facility, IISc, for help in the analysis of lipids.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipankar Chatterji or Narayanaswamy Jayaraman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2324 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Syal, K., Maiti, K., Naresh, K. et al. Synthetic arabinomannan glycolipids impede mycobacterial growth, sliding motility and biofilm structure. Glycoconj J 33, 763–777 (2016). https://doi.org/10.1007/s10719-016-9670-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9670-6

Keywords

  • Biofilms
  • Glycolipids
  • Mycobacteria
  • Oligosaccharides
  • Sliding motility