Aujoulat, F., Roger, F., Bourdier, A., Lotthé, A., Lamy, B., Marchandin, H., Jumas-Bilak, E.: From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes 3(2), 191 (2012)
CAS
PubMed
PubMed Central
Article
Google Scholar
WHO report: WHO/HTM/TB/2009.411. World Health Organization, Geneva (2009)
Bassetti, M., Righi, E.: Multidrug-resistant bacteria: what is the threat? ASH Education Program Book. (1), 428–432 (2013)
Syal, K., Maiti, K., Naresh, K., Chatterji, D., Jayaraman, N.: Synthetic glycolipids and (p)ppGpp analogs: development of inhibitors for mycobacterial growth, biofilm and stringent response. Adv. Exp. Med. Biol. 842, 309–327 (2015)
PubMed
Article
Google Scholar
Alderwick, L.J., Harrison, J., Lloyd, G.S., Birch, H.L.: The mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. (2015)
Daffe, M., Draper, P.: The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998)
CAS
PubMed
Article
Google Scholar
Daffe, M.: The cell envelope of tubercle bacilli. Tuberculosis (Edinb) (2015). doi:10.1016/j.tube.2015.02.024
Google Scholar
Schorey, J.S., Sweet, L.: The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18(11), 832–841 (2008)
CAS
PubMed
PubMed Central
Article
Google Scholar
Branda, S.S., Vik, S., Friedman, L., Kolter, R.: Biofilms: the matrix revisited. Trends Microbiol. 13(1), 20–26 (2005)
CAS
PubMed
Article
Google Scholar
Penesyan, A., Gillings, M., Paulsen, I.T.: Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20(4), 5286–5298 (2015)
CAS
PubMed
Article
Google Scholar
Bahar, A.A., Liu, Z., Garafalo, M., Kallenbach, N., Ren, D.: Controlling persister and biofilm cells of gram-negative bacteria with a new 1,3,5-triazine derivative. Pharm. (Basel) 8(4), 696–710 (2015)
CAS
Article
Google Scholar
Sharma, I.M., Petchiappan, A., Chatterji, D.: Quorum sensing and biofilm formation in mycobacteria: role of c-di-GMP and methods to study this second messenger. IUBMB Life 66(12), 823–834 (2014)
CAS
PubMed
Article
Google Scholar
Chavez de Paz, L.E., Lemos, J.A., Wickstrom, C., Sedgley, C.M.: Role of (p)ppGpp in biofilm formation by Enterococcus faecalis. Appl. Environ. Microbiol. 78(5), 1627–1630 (2012)
CAS
PubMed
PubMed Central
Article
Google Scholar
Cotter, P.A., Stibitz, S.: c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10(1), 17–23 (2007)
CAS
PubMed
Article
Google Scholar
Karaolis, D.K., Rashid, M.H., Chythanya, R., Luo, W., Hyodo, M., Hayakawa, Y.: c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob. Agents Chemother. 49(3), 1029–1038 (2005)
CAS
PubMed
PubMed Central
Article
Google Scholar
Syal, K., Joshi, H., Chatterji, D., Jain, V.: Novel pppGpp binding site at the C‐terminal region of the Rel enzyme from Mycobacterium smegmatis. FEBS J. 282(19), 3773–3785 (2015)
CAS
PubMed
Article
Google Scholar
Syal, K., Chatterji, D.: Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo‐labeling and mass spectral studies. Genes Cells 20(12), 1006–1016 (2015)
CAS
PubMed
Article
Google Scholar
Naresh, K., Bharati, B.K., Jayaraman, N., Chatterji, D.: Synthesis and mycobacterial growth inhibition activities of bivalent and monovalent arabinofuranoside containing alkyl glycosides. Org. Biomol. Chem. 6(13), 2388–2393 (2008)
CAS
PubMed
Article
Google Scholar
Naresh, K., Avaji, P.G., Maiti, K., Bharati, B.K., Syal, K., Chatterji, D., Jayaraman, N.: Synthesis of beta-arabinofuranoside glycolipids, studies of their binding to surfactant protein-A and effect on sliding motilities of M. smegmatis. Glycoconj. J. 29(2–3), 107–118 (2012)
CAS
PubMed
Article
Google Scholar
Naresh, K., Bharati, B.K., Avaji, P.G., Chatterji, D., Jayaraman, N.: Synthesis, biological studies of linear and branched arabinofuranoside-containing glycolipids and their interaction with surfactant protein A. Glycobiology 21(9), 1237–1254 (2011)
CAS
PubMed
Article
Google Scholar
Bharati, B.K., Naresh, K., Chatterji, D., Jayaraman, N.: Synthetic arabinan, arabinomannan glycolipids and their effects on mycobacterial growth, sliding motility and biofilm formation. Carbohydr. Chemi. R. Soc. Chem. 39, 58–77 (2013)
CAS
Google Scholar
Naresh, K., Bharati, B.K., Avaji, P.G., Jayaraman, N., Chatterji, D.: Synthetic arabinomannan glycolipids and their effects on growth and motility of the Mycobacterium smegmatis. Org. Biomol. Chem. 8(3), 592–599 (2010)
CAS
PubMed
Article
Google Scholar
Fraser-Reid, B., Lu, J., Jayaprakash, K.N., López, J.C.: Synthesis of a 28-mer oligosaccharide core of Mycobacterial lipoarabinomannan (LAM) requires only two n-pentenyl orthoester progenitors. Tetrahedron Asymmetry 17(17), 2449–2463 (2006)
CAS
Article
Google Scholar
Holemann, A., Stocker, B.L., Seeberger, P.H.: Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis. J. Org. Chem. 71(21), 8071–8088 (2006)
PubMed
Article
Google Scholar
Ishiwata, A., Ito, Y.: Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall. J. Am. Chem. Soc. 133(7), 2275–2291 (2011)
CAS
PubMed
Article
Google Scholar
Pozsgay, V.: A new strategy in oligosaccharide synthesis using lipophilic protecting groups: synthesis of a tetracosasaccharide. Tetrahedron Asymmetry 11(1), 151–172 (2000)
CAS
Article
Google Scholar
Crick, D.C., Brennan, P.J.: Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. In: Daffé, M., Reyrat, J.-M. (eds.) The mycobacterial cell envelope, pp. 25–40. ASM Press, Washington, DC (2008)
Chapter
Google Scholar
Schmidt, R.R., Grundler, G.: α-Linked Disaccharides from O-(β-D-Glycopyranosyl) Trichloroacetimidates using Trimethylsilyl Trifluoromethanesulfonate as Catalyst. Angew. Chem. Int. Ed. Engl. 21(10), 781–782 (1982)
Article
Google Scholar
Martinez, A., Torello, S., Kolter, R.: Sliding motility in mycobacteria. J. Bacteriol. 181(23), 7331–7338 (1999)
CAS
PubMed
PubMed Central
Google Scholar
Recht, J., Martinez, A., Torello, S., Kolter, R.: Sliding motility and biofilm formation in mycobacteria. Acta Cient. Venez. 52(Suppl 1), 45–49 (2001)
PubMed
Google Scholar
Nessar, R., Reyrat, J.M., Davidson, L.B., Byrd, T.F.: Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response. Microbiology 157(Pt 4), 1187–1195 (2011)
CAS
PubMed
Article
Google Scholar
Belisle, J.T., Klaczkiewicz, K., Brennan, P.J., Jacobs Jr., W.R., Inamine, J.M.: Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J. Biol. Chem. 268(14), 10517–10523 (1993)
CAS
PubMed
Google Scholar
Recht, J., Martinez, A., Torello, S., Kolter, R.: Genetic analysis of sliding motility in Mycobacterium smegmatis. J. Bacteriol. 182(15), 4348–4351 (2000)
CAS
PubMed
PubMed Central
Article
Google Scholar
Recht, J., Kolter, R.: Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J. Bacteriol. 183(19), 5718–5724 (2001)
CAS
PubMed
PubMed Central
Article
Google Scholar
Beloin, C., Roux, A., Ghigo, J.M.: Escherichia coli biofilms. Curr. Top. Microbiol. Immunol. 322, 249–289 (2008)
CAS
PubMed
PubMed Central
Google Scholar
Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs Jr., W.R., Hatfull, G.F.: GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123(5), 861–873 (2005)
CAS
PubMed
Article
Google Scholar
Ojha, A.K., Baughn, A.D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs Jr., W.R., Hatfull, G.F.: Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69(1), 164–174 (2008)
CAS
PubMed
PubMed Central
Article
Google Scholar
Ojha, A.K., Trivelli, X., Guerardel, Y., Kremer, L., Hatfull, G.F.: Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J. Biol. Chem. 285(23), 17380–17389 (2010)
CAS
PubMed
PubMed Central
Article
Google Scholar
Alibaud, L., Alahari, A., Trivelli, X., Ojha, A.K., Hatfull, G.F., Guerardel, Y., Kremer, L.: Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG_1351) in CIS-cyclopropanation of alpha-mycolates. J. Biol. Chem. 285(28), 21698–21707 (2010)
CAS
PubMed
PubMed Central
Article
Google Scholar
40. Maya-Hoyos, M., Leguizamon, J., Marino-Ramirez, L., Soto, C.Y.: Sliding motility, biofilm formation, and glycopeptidolipid production in mycobacterium Colombiense strains. Biomed. Res. Int. 419549, (2015)
Fujiwara, N., Ohara, N., Ogawa, M., Maeda, S., Naka, T., Taniguchi, H., Yamamoto, S., Ayata, M.: Glycopeptidolipid of mycobacterium smegmatis J15cs affects morphology and survival in host cells. PLoS One 10(5), e0126813 (2015)
PubMed
PubMed Central
Article
Google Scholar
Villeneuve, C., Gilleron, M., Maridonneau-Parini, I., Daffe, M., Astarie-Dequeker, C., Etienne, G.: Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J. Lipid Res. 46(3), 475–483 (2005)
CAS
PubMed
Article
Google Scholar
Richards, J.J., Melander, C.: Controlling bacterial biofilms. Chembiochem 10(14), 2287–2294 (2009)
CAS
PubMed
Article
Google Scholar
Marcinkiewicz, J., Strus, M., Pasich, E.: Antibiotic resistance: a “dark side” of biofilm associated chronic infections. Pol. Arch. Med. Wewn. 123(6), 309–313 (2013)
PubMed
Google Scholar
Ehud, A., Shiri, N.-V., Eyal, G., Boris, K., Rivka, G., Daphna, F.-K., Eyal, K., Yehuda, C., Yoav, B.: Novel rat model of methicillin-resistant Staphylococcus aureus-infected silicone breast implants: a study of biofilm pathogenesis. Plast. Reconstr. Surg. 131(2), 205–214 (2013)
Article
Google Scholar
Sakamoto, A., Terui, Y., Yamamoto, T., Kasahara, T., Nakamura, M., Tomitori, H., Yamamoto, K., Ishihama, A., Michael, A.J., Igarashi, K., Kashiwagi, K.: Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int. J. Biochem. Cell Biol. 44(11), 1877–1886 (2012)
CAS
PubMed
Article
Google Scholar
Richards, J.P., Ojha, A.K.: Mycobacterial biofilms. Microbiol. Spectrum 2(5), MGM2-0004-2013 (2014)
Islam, M.S., Richards, J.P., Ojha, A.K.: Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms. Expert Rev. Anti-Infect. Ther. 10(9), 1055–1066 (2012)
CAS
PubMed
PubMed Central
Article
Google Scholar
Rombouts, Y., Brust, B., Ojha, A.K., Maes, E., Coddeville, B., Elass-Rochard, E., Kremer, L., Guerardel, Y.: Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to mycolyl-arabinogalactan-peptidoglycan metabolism. J. Biol. Chem. 287(14), 11060–11069 (2012)
CAS
PubMed
PubMed Central
Article
Google Scholar
Mathew, R., Mukherjee, R., Balachandar, R., Chatterji, D.: Deletion of the rpoZ gene, encoding the omega subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis. Microbiology 152(Pt 6), 1741–1750 (2006)
CAS
PubMed
Article
Google Scholar
Gidden, J., Denson, J., Liyanage, R., Ivey, D.M., Lay, J.O.: Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. Int. J. Mass Spectrom. 283(1–3), 178–184 (2009)
CAS
PubMed
PubMed Central
Article
Google Scholar
Riobó, P., Paz, B., Franco, J.M., Vázquez, J.A., Murado, M.A.: Proposal for a simple and sensitive haemolytic assay for palytoxin: toxicological dynamics, kinetics, ouabain inhibition and thermal stability. Harmful Algae 7(4), 415–429 (2008)
Krog-Jensen, C., Oscarson, S.: Synthesis of d-fructofuranosides using thioglycosides as glycosyl donors. J. Org. Chem. 61, 1234–1238 (1996) Reference [53] was provided in the reference list; however, this was not mentioned or cited in the manuscript. As a rule, all references given in the list of references should be cited in the main body. Please provide its citation in the body text.The following reorganization of the references is requested:(i) Reference 53 is to be cited as reference 50.(ii) Reference 50 is to be cited as reference 51.(iii) Reference 51 is to be cited as reference 52.(iv) Reference 52 is to be cited as reference 53.