Glycoconjugate Journal

, Volume 33, Issue 5, pp 693–705 | Cite as

Chondroitin sulphate: a focus on osteoarthritis

  • Mamta Bishnoi
  • Ankit Jain
  • Pooja Hurkat
  • Sanjay K. Jain


Chondroitin sulfate (CS) being a natural glycosaminoglycan is found in the cartilage and extracellular matrix. It shows clinical benefits in symptomatic osteoarthritis (OA) of the finger, knee, hip joints, low back, facial joints and other diseases due to its anti-inflammatory activity. It also helps in OA by providing resistance to compression, maintaining the structural integrity, homeostasis, slows breakdown and reduces pain in sore muscles. It is most often used in combination with glucosamine to treat OA. CS is a key role player in the regulation of cell development, cell adhesion, proliferation, and differentiation. Its commercial applications have been continuously explored in the engineering of biological tissues and its combination with other biopolymers to formulate scaffolds which promote and accelerate the regeneration of damaged structure. It is approved in the USA as a dietary supplement for OA, while it is used as a symptomatic slow-acting drug (SYSADOA) in Europe and some other countries. Any significant side effects or overdoses of CS have not been reported in clinical trials suggesting its long-term safety. This review highlights the potential of CS, either alone or in combination with other drugs, to attract the scientists engaged in OA treatment and management across the world.


Chondroitin sulfate Osteoarthritis Glucosamine Glycosaminoglycanes Anti-inflammatory Targeting, Drug delivery 



Authors namely AJ and PH are thankful to Council of Scientific and Industrial Research (New Delhi) for providing Senior Research Fellowship.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest including all financial and non-financial nature.

Author’s contribution

All authors contributed equally for the content and writing of this manuscript. They read and approved the final manuscript.


  1. 1.
    Ogawa H., Hatano S., Sugiura N., Nagai N., Sato T., Shimizu K., Kimata K., Narimatsu H., Watanabe H.: Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development. PLoS One. 7(8), e43806 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zhang G., Ezura Y., Chervoneva I., Robinson P.S., Beason D.P., Carine E.T., Soslowsky L.J., Iozzo R.V., Birk D.E.: Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 98(6), 1436–1449 (2006)PubMedCrossRefGoogle Scholar
  3. 3.
    Atoji Y., Yamamoto Y., Suzuki Y.: The presence of chondroitin sulfate A and C within axon terminals in the Superior olivary nuclei of the adult dog. Neurosci. Lett. 189(1), 39–42 (1995)PubMedCrossRefGoogle Scholar
  4. 4.
    Raspanti M., Congiu T., Guizzardi S.: Structural aspects of the extracellular matrix of the tendon: an atomic force and scanning electron microscopy study. Arch. Histol. Cytol. 65(1), 37–43 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    Silbert J.E., Sugumaran G.: Biosynthesis of chondroitin/dermatan sulfate. IUBMB life. 54(4), 177–186 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    Kubový P., Mensikova L., Kůrková E., Lopot F., Hojka V., Jelen K.: Influence of SYSADOA group chemicals on progression of human knee joint osteoarthritis: new objective evaluation method-measuring of rheological properties in vivo. Neuro endocrinology letters. 33(6), 651–659 (2011)Google Scholar
  7. 7.
    Schneider H., Maheu E., Cucherat M.: Symptom-modifying effect of chondroitin sulfate in knee osteoarthritis: a meta-analysis of randomized placebo-controlled trials performed with Structum®. The open rheumatology journal. 6, 183 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Michel B.A., Stucki G., Frey D., De Vathaire F., Vignon E., Bruehlmann P., Uebelhart D.: Chondroitins 4 and 6 sulfate in osteoarthritis of the knee: a randomized, controlled trial. Arthritis Rheum. 52(3), 779–786 (2005). doi: 10.1002/art.20867 PubMedCrossRefGoogle Scholar
  9. 9.
    Volpi N.: Analytical aspects of pharmaceutical grade chondroitin sulfates. J. Pharm. Sci. 96(12), 3168–3180 (2007)PubMedCrossRefGoogle Scholar
  10. 10.
    Rubio-Terrés C.: An economic evaluation of chondroitin sulfate and non-steroidal anti-inflammatory drugs for the treatment of osteoarthritis. Data from the VECTRA study. Reumatología Clínica. English Edition 6(4), 187–195 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    Aubry-Rozier B.: [Role of slow-acting anti-arthritic agents in osteoarthritis (chondroitin sulfate, glucosamine, hyaluronic acid)]. Revue medicale suisse. 8(332), 571–572 (2012)574, 576PubMedGoogle Scholar
  12. 12.
    Monfort J., Pelletier J.-P., Garcia-Giralt N., Martel-Pelletier J.: Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Ann. Rheum. Dis. 67(6), 735–740 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    Uebelhart D.: Clinical review of chondroitin sulfate in osteoarthritis. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 16(Suppl 3), S19–S21 (2008). doi: 10.1016/j.joca.2008.06.006 PubMedCrossRefGoogle Scholar
  14. 14.
    Schiraldi C., Cimini D., De Rosa M.: Production of chondroitin sulfate and chondroitin. Appl. Microbiol. Biotechnol. 87(4), 1209–1220 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    Caterson B., Mahmoodian F., Sorrell J.M., Hardingham T., Bayliss M., Carney S., Ratcliffe A., Muir H.: Modulation of native chondroitin sulphate structure in tissue development and in disease. J. Cell Sci. 97(3), 411–417 (1990)PubMedGoogle Scholar
  16. 16.
    Oryan, A., Moshiri, A., Meimandi-Parizi, A.-H.: Short and long terms healing of the experimentally transverse sectioned tendon in rabbits. BMC Sports Science, Medicine and Rehabilitation 4(1), 14 (2012).Google Scholar
  17. 17.
    Bobula T., Buffa R., Procházková P., Vágnerová H., Moravcová V., Šuláková R., Židek O., Velebný V.: One-pot synthesis of α, β-unsaturated polyaldehyde of chondroitin sulfate. Carbohydr. Polym. 136, 1002–1009 (2016)PubMedCrossRefGoogle Scholar
  18. 18.
    Adebowale A.O., Cox D.S., Liang Z., Eddington N.D.: Analysis of glucosamine and chondroitin sulfate content in marketed products and the Caco-2 permeability of chondroitin sulfate raw materials. J Am Nutraceutical Assoc. 3(1), 37–44 (2000)Google Scholar
  19. 19.
    Kinoshita-Toyoda A., Yamada S., Haslam S.M., Khoo K.H., Sugiura M., Morris H.R., Dell A., Sugahara K.: Structural determination of five novel tetrasaccharides containing 3-O-sulfated D-glucuronic acid and two rare oligosaccharides containing a beta-D-glucose branch isolated from squid cartilage chondroitin sulfate E. Biochemistry. 43(34), 11063–11074 (2004). doi: 10.1021/bi049622d PubMedCrossRefGoogle Scholar
  20. 20.
    Caterson B.: Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int. J. Exp. Pathol. 93(1), 1–10 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nakano T., Ikawa N., Ozimek L.: An economical method to extract chondroitin sulphate-peptide from bovine nasal cartilage. Can. Agric. Eng. 42(4), 205–208 (2000)Google Scholar
  22. 22.
    Luo X., Fosmire G., Leach R.: Chicken keel cartilage as a source of chondroitin sulfate. Poult. Sci. 81(7), 1086–1089 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    Nandini C.D., Itoh N., Sugahara K.: Novel 70-kDa chondroitin sulfate/dermatan sulfate hybrid chains with a unique heterogenous sulfation pattern from shark skin, which exhibit neuritogenic activity and binding activities for growth factors and neurotrophic factors. J. Biol. Chem. 280(6), 4058–4069 (2005)PubMedCrossRefGoogle Scholar
  24. 24.
    Lignot B., Lahogue V., Bourseau P.: Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. J. Biotechnol. 103(3), 281–284 (2003)PubMedCrossRefGoogle Scholar
  25. 25.
    Vázquez J.A., Rodríguez-Amado I., Montemayor M.I., Fraguas J., González M.D.P., Murado M.A.: Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Marine drugs. 11(3), 747–774 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lauder R.M.: Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complementary therapies in medicine. 17(1), 56–62 (2009)PubMedCrossRefGoogle Scholar
  27. 27.
    Tat S.K., Pelletier J.-P., Mineau F., Duval N., Martel-Pelletier J.: Variable effects of 3 different chondroitin sulfate compounds on human osteoarthritic cartilage/chondrocytes: relevance of purity and production process. J. Rheumatol. 37(3), 656–664 (2010)PubMedCrossRefGoogle Scholar
  28. 28.
    Calamia V., Lourido L., Fernández-Puente P., Mateos J., Rocha B., Montell E., Vergés J., Ruiz-Romero C., Blanco F.J.: Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis research & therapy. 14(5), R202 (2012)CrossRefGoogle Scholar
  29. 29.
    Guerrini M., Beccati D., Shriver Z., Naggi A., Viswanathan K., Bisio A., Capila I., Lansing J.C., Guglieri S., Fraser B.: Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotechnol. 26(6), 669–675 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bollet A.J., Nance J.L.: Biochemical findings in normal and osteoarthritic articular cartilage. II. Chondroitin sulfate concentration and chain length, water, and ash content. Journal of Clinical Investigation. 45(7), 1170 (1966)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hascall V.C., Calabro A., Midura R.J., Yanagishita M.: Isolation and characterization of proteoglycans. Methods Enzymol. 230, 390–417 (1993)CrossRefGoogle Scholar
  32. 32.
    Rodén L., Baker J.R., Cifonelli J.A., Mathews M.B.: [7] isolation and characterization of connective tissue polysaccharides. Methods Enzymol. 28, 73–140 (1972)CrossRefGoogle Scholar
  33. 33.
    Kim S.B., Ji C.I., Woo J.W., Do J.R., Cho S.M., Lee Y.B., Kang S.N., Park J.H.: Simplified purification of chondroitin sulphate from scapular cartilage of shortfin mako shark (Isurus oxyrinchus). International Journal of Food Science & Technology. 47(1), 91–99 (2012)CrossRefGoogle Scholar
  34. 34.
    Bedini E., De Castro C., De Rosa M., Di Nola A., Restaino O.F., Schiraldi C., Parrilli M.: Semi-Synthesis of Unusual chondroitin sulfate polysaccharides containing GlcA (3-O-sulfate) or GlcA (2, 3-di-O-sulfate) Units. Chemistry-A European Journal. 18(7), 2123–2130 (2012)CrossRefGoogle Scholar
  35. 35.
    Restaino O.F., di Lauro I., Cimini D., Carlino E., De Rosa M., Schiraldi C.: Monosaccharide precursors for boosting chondroitin-like capsular polysaccharide production. Appl. Microbiol. Biotechnol. 97(4), 1699–1709 (2013)PubMedCrossRefGoogle Scholar
  36. 36.
    Pomin V.H.: Chondroitin sulfate: Structure, uses and health implications. Nova Science Publishers, Incorporated, Hauppauge (2013)Google Scholar
  37. 37.
    Liu X., Sun C., Zang H., Wang W., Guo R., Wang F.: Capillary electrophoresis for simultaneous analysis of heparin, chondroitin sulfate and hyaluronic acid and its application in preparations and synovial fluid. J. Chromatogr. Sci. 50(5), 373–379 (2012)PubMedCrossRefGoogle Scholar
  38. 38.
    Bielik A.M., Zaia J.: Extraction of chondroitin/dermatan sulfate glycosaminoglycans from connective tissue for mass spectrometric analysis. Methods in molecular biology (Clifton, N.J.). 600, 215–225 (2010). doi: 10.1007/978-1-60761-454-8_15 CrossRefGoogle Scholar
  39. 39.
    David J., Roman M., Zhou J., Hildreth J.: Determination of chondroitin sulfate content in raw materials and dietary supplements by high-performance liquid chromatography with ultraviolet detection after enzymatic hydrolysis: Single-laboratory validation. J. AOAC Int. 90(3), 659 (2007)Google Scholar
  40. 40.
    Solakyildirim K., Zhang Z., Linhardt R.J.: Ultraperformance liquid chromatography with electrospray ionization ion trap mass spectrometry for chondroitin disaccharide analysis. Anal. Biochem. 397(1), 24–28 (2010)PubMedCrossRefGoogle Scholar
  41. 41.
    Jackson C.G., Plaas A.H., Sandy J.D., Hua C., Kim-Rolands S., Barnhill J.G., Harris C.L., Clegg D.O.: The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination. Osteoarthr. Cartil. 18(3), 297–302 (2010)PubMedCrossRefGoogle Scholar
  42. 42.
    Xiao Y., Li P., Cheng Y., Zhang X., Sheng J., Wang D., Li J., Zhang Q., Zhong C., Cao R.: Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates. Int. J. Pharm. 465(1), 143–158 (2014)PubMedCrossRefGoogle Scholar
  43. 43.
    Ronca G., Conte A.: Metabolic fate of partially depolymerized shark chondroitin sulfate in man. Int. J. Clin. Pharmacol. Res. 13, 27–34 (1992)Google Scholar
  44. 44.
    Volpi N.: Oral absorption and bioavailability of ichthyic origin chondroitin sulfate in healthy male volunteers. Osteoarthr. Cartil. 11(6), 433–441 (2003)PubMedCrossRefGoogle Scholar
  45. 45.
    Du J., White N., Eddington N.D.: The bioavailability and pharmacokinetics of glucosamine hydrochloride and chondroitin sulfate after oral and intravenous single dose administration in the horse. Biopharm. Drug Dispos. 25(3), 109–116 (2004)PubMedCrossRefGoogle Scholar
  46. 46.
    Hathcock J.N., Shao A.: Risk assessment for glucosamine and chondroitin sulfate. Regul. Toxicol. Pharmacol. 47(1), 78–83 (2007)PubMedCrossRefGoogle Scholar
  47. 47.
    Cerda C., Bruguera M., Parés A.: Hepatotoxicity associated with glucosamine and chondroitin sulfate in patients with chronic liver disease. World journal of gastroenterology: WJG. 19(32), 5381 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    von Felden J., Montani M., Kessebohm K., Stickel F.: Drug-induced acute liver injury mimicking autoimmune hepatitis after intake of dietary supplements containing glucosamine and chondroitin sulfate. Int. J. Clin. Pharmacol. Ther. 51(3), 219–223 (2013)CrossRefGoogle Scholar
  49. 49.
    Felson D.T., Lawrence R.C., Hochberg M.C., McAlindon T., Dieppe P.A., Minor M.A., Blair S.N., Berman B.M., Fries J.F., Weinberger M.: Osteoarthritis: new insights. Part 2: treatment approaches. Annals of internal medicine. 133(9), 726–737 (2000)PubMedCrossRefGoogle Scholar
  50. 50.
    Gerlie, C., Koda, R.T., Lien, E.J.: Glucosamine and chondroitin sulfates in the treatment of osteoarthritis: a survey. In: Progress in drug research. pp. 81–103. Springer, (2000)Google Scholar
  51. 51.
    Zegels B., Crozes P., Uebelhart D., Bruyère O., Reginster J.-Y.: Equivalence of a single dose (1200 mg) compared to a three-time a day dose (400 mg) of chondroitin 4&6 sulfate in patients with knee osteoarthritis. Results of a randomized double blind placebo controlled study. Osteoarthritis and Cartilage. 21(1), 22–27 (2013)PubMedCrossRefGoogle Scholar
  52. 52.
    Uwe S.: Anti-inflammatory interventions of NF-κB signaling: potential applications and risks. Biochem. Pharmacol. 75(8), 1567–1579 (2008)PubMedCrossRefGoogle Scholar
  53. 53.
    Foell D., Wittkowski H., Roth J.: Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nature clinical practice. Rheumatology. 3(7), 382–390 (2007). doi: 10.1038/ncprheum0531 PubMedCrossRefGoogle Scholar
  54. 54.
    Jomphe C., Gabriac M., Hale T.M., Heroux L., Trudeau L.E., Deblois D., Montell E., Verges J., du Souich P.: Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-kappaB in interleukin-1beta-stimulated chondrocytes. Basic & clinical pharmacology & toxicology. 102(1), 59–65 (2008). doi: 10.1111/j.1742-7843.2007.00158.x Google Scholar
  55. 55.
    Smiley S.T., King J.A., Hancock W.W.: Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. Journal of immunology (Baltimore, Md.: 1950). 167(5), 2887–2894 (2001)CrossRefGoogle Scholar
  56. 56.
    Stahel P.F., Smith W.R., Moore E.E.: Role of biological modifiers regulating the immune response after trauma. Injury. 38(12), 1409–1422 (2007). doi: 10.1016/j.injury.2007.09.023 PubMedCrossRefGoogle Scholar
  57. 57.
    Liu-Bryan R., Terkeltaub R.: Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous toll-like receptor 2/toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 62(7), 2004–2012 (2010). doi: 10.1002/art.27475 PubMedPubMedCentralGoogle Scholar
  58. 58.
    van Lent P.L., Blom A.B., Schelbergen R.F., Sloetjes A., Lafeber F.P., Lems W.F., Cats H., Vogl T., Roth J., van den Berg W.B.: Active involvement of alarmins S100 A8 and S100 A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 64(5), 1466–1476 (2012). doi: 10.1002/art.34315 PubMedCrossRefGoogle Scholar
  59. 59.
    Schelbergen R.F., Blom A.B., van den Bosch M.H., Sloetjes A., Abdollahi-Roodsaz S., Schreurs B.W., Mort J.S., Vogl T., Roth J., van den Berg W.B., van Lent P.L.: Alarmins S100 A8 and S100 A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on toll-like receptor 4. Arthritis Rheum. 64(5), 1477–1487 (2012). doi: 10.1002/art.33495 PubMedCrossRefGoogle Scholar
  60. 60.
    Sohn D.H., Sokolove J., Sharpe O., Erhart J.C., Chandra P.E., Lahey L.J., Lindstrom T.M., Hwang I., Boyer K.A., Andriacchi T.P., Robinson W.H.: Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthritis research & therapy. 14(1), R7 (2012). doi: 10.1186/ar3555 CrossRefGoogle Scholar
  61. 61.
    Liu-Bryan R., Pritzker K., Firestein G.S., Terkeltaub R.: TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. Journal of immunology (Baltimore, Md.: 1950). 174(8), 5016–5023 (2005)CrossRefGoogle Scholar
  62. 62.
    Martinon F., Petrilli V., Mayor A., Tardivel A., Tschopp J.: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 440(7081), 237–241 (2006). doi: 10.1038/nature04516 PubMedCrossRefGoogle Scholar
  63. 63.
    Pazar B., Ea H.K., Narayan S., Kolly L., Bagnoud N., Chobaz V., Roger T., Liote F., So A., Busso N.: Basic calcium phosphate crystals induce monocyte/macrophage IL-1beta secretion through the NLRP3 inflammasome in vitro. Journal of immunology (Baltimore, Md.: 1950). 186(4), 2495–2502 (2011). doi: 10.4049/jimmunol.1001284 CrossRefGoogle Scholar
  64. 64.
    Denoble A.E., Huffman K.M., Stabler T.V., Kelly S.J., Hershfield M.S., McDaniel G.E., Coleman R.E., Kraus V.B.: Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc. Natl. Acad. Sci. U. S. A. 108(5), 2088–2093 (2011). doi: 10.1073/pnas.1012743108 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Steenvoorden M.M., Bank R.A., Ronday H.K., Toes R.E., Huizinga T.W., DeGroot J.: Fibroblast-like synoviocyte-chondrocyte interaction in cartilage degradation. Clin. Exp. Rheumatol. 25(2), 239–245 (2007)PubMedGoogle Scholar
  66. 66.
    Wang Q., Rozelle A.L., Lepus C.M., Scanzello C.R., Song J.J., Larsen D.M., Crish J.F., Bebek G., Ritter S.Y., Lindstrom T.M., Hwang I., Wong H.H., Punzi L., Encarnacion A., Shamloo M., Goodman S.B., Wyss-Coray T., Goldring S.R., Banda N.K., Thurman J.M., Gobezie R., Crow M.K., Holers V.M., Lee D.M., Robinson W.H.: Identification of a central role for complement in osteoarthritis. Nat. Med. 17(12), 1674–1679 (2011). doi: 10.1038/nm.2543 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Loeser R.F.: Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 54(5), 1357–1360 (2006). doi: 10.1002/art.21813 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kaneko S., Satoh T., Chiba J., Ju C., Inoue K., Kagawa J.: Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines, cellular & molecular therapy. 6(2), 71–79 (2000)CrossRefGoogle Scholar
  69. 69.
    Martel-Pelletier J., Pelletier J.P., Fahmi H.: Cyclooxygenase-2 and prostaglandins in articular tissues. Semin. Arthritis Rheum. 33(3), 155–167 (2003)PubMedCrossRefGoogle Scholar
  70. 70.
    Okamura Y., Watari M., Jerud E.S., Young D.W., Ishizaka S.T., Rose J., Chow J.C., Strauss 3rd J.F.: The extra domain A of fibronectin activates toll-like receptor 4. J. Biol. Chem. 276(13), 10229–10233 (2001). doi: 10.1074/jbc.M100099200 PubMedCrossRefGoogle Scholar
  71. 71.
    Termeer C., Benedix F., Sleeman J., Fieber C., Voith U., Ahrens T., Miyake K., Freudenberg M., Galanos C., Simon J.C.: Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. The Journal of experimental medicine. 195(1), 99–111 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Midwood K., Sacre S., Piccinini A.M., Inglis J., Trebaul A., Chan E., Drexler S., Sofat N., Kashiwagi M., Orend G., Brennan F., Foxwell B.: Tenascin-C is an endogenous activator of toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15(7), 774–780 (2009). doi: 10.1038/nm.1987 PubMedCrossRefGoogle Scholar
  73. 73.
    Nakoshi Y., Hasegawa M., Akeda K., Iino T., Sudo A., Yoshida T., Uchida A.: Distribution and role of tenascin-C in human osteoarthritic cartilage. J. Orthop. Sci. 15(5), 666–673 (2010)PubMedCrossRefGoogle Scholar
  74. 74.
    Monfort J., Nacher M., Montell E., Vila J., Verges J., Benito P.: Chondroitin sulfate and hyaluronic acid (500-730 kda) inhibit stromelysin-1 synthesis in human osteoarthritic chondrocytes. Drugs Exp. Clin. Res. 31(2), 71–76 (2004)Google Scholar
  75. 75.
    Homandberg G.A., Hui F.: Association of proteoglycan degradation with catabolic cytokine and stromelysin release from cartilage cultured with fibronectin fragments. Arch. Biochem. Biophys. 334(2), 325–331 (1996). doi: 10.1006/abbi.1996.0461 PubMedCrossRefGoogle Scholar
  76. 76.
    Vuolteenaho K., Koskinen A., Kukkonen M., Nieminen R., Päivärinta U., Moilanen T., Moilanen E.: Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage—mediator role of NO in Leptin-Induced P G E. Mediat. Inflamm. 2009, 345838 (2009)CrossRefGoogle Scholar
  77. 77.
    Ishimaru D., Sugiura N., Akiyama H., Watanabe H., Matsumoto K.: Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. Osteoarthr. Cartil. 22(2), 250–258 (2014)PubMedCrossRefGoogle Scholar
  78. 78.
    Sokolove J., Lepus C.M.: Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic advances in musculoskeletal disease. 5(2), 77–94 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gupta G.S., Gupta A., Gupta R.K.: Animal lectins: form. Function and Clinical Applications, Form, Function and Clinical Applications. Springer, Vienna (2012)CrossRefGoogle Scholar
  80. 80.
    Harris E.N., Weigel P.H.: The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E. Glycobiology. 18(8), 638–648 (2008). doi: 10.1093/glycob/cwn045 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Weigel P.H., Yik J.H.: Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochimica et Biophysica Acta (BBA)-General Subjects. 1572(2), 341–363 (2002)CrossRefGoogle Scholar
  82. 82.
    Dickendesher T.L., Baldwin K.T., Mironova Y.A., Koriyama Y., Raiker S.J., Askew K.L., Wood A., Geoffroy C.G., Zheng B., Liepmann C.D.: NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat. Neurosci. 15(5), 703–712 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    du Souich P.: Absorption, distribution and mechanism of action of SYSADOAS. Pharmacol. Ther. 142(3), 362–374 (2014)PubMedCrossRefGoogle Scholar
  84. 84.
    Bara J.J., Johnson W.E.B., Caterson B., Roberts S.: Articular cartilage glycosaminoglycans inhibit the adhesion of endothelial cells. Connect. Tissue Res. 53(3), 220–228 (2012)PubMedCrossRefGoogle Scholar
  85. 85.
    Martel-Pelletier J., Roubille C., Abram F., Hochberg M.C., Dorais M., Delorme P., Raynauld J.-P., Pelletier J.-P.: First-line analysis of the effects of treatment on progression of structural changes in knee osteoarthritis over 24 months: data from the osteoarthritis initiative progression cohort. Ann. Rheum. Dis. 74, 547–556 (2015)PubMedCrossRefGoogle Scholar
  86. 86.
    Wildi L.M., Raynauld J.-P., Martel-Pelletier J., Beaulieu A., Bessette L., Morin F., Abram F., Dorais M., Pelletier J.-P.: Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomised, double-blind, placebo-controlled pilot study using MRI. Ann. Rheum. Dis. 70(6), 982–989 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Largo R., Roman-Blas J., Moreno-Rubio J., Sánchez-Pernaute O., Martínez-Calatrava M., Castañeda S., Herrero-Beaumont G.: Chondroitin sulfate improves synovitis in rabbits with chronic antigen-induced arthritis. Osteoarthr. Cartil. 18, S17–S23 (2010)PubMedCrossRefGoogle Scholar
  88. 88.
    Hochberg M.: Structure-modifying effects of chondroitin sulfate in knee osteoarthritis: an updated meta-analysis of randomized placebo-controlled trials of 2-year duration. Osteoarthr. Cartil. 18, S28–S31 (2010)PubMedCrossRefGoogle Scholar
  89. 89.
    Hochberg M., Chevalier X., Henrotin Y., Hunter D., Uebelhart D.: Symptom and structure modification in osteoarthritis with pharmaceutical-grade chondroitin sulfate: what's the evidence? Current Medical Research & Opinion. 29(3), 259–267 (2013)CrossRefGoogle Scholar
  90. 90.
    Imada K., Oka H., Kawasaki D., Miura N., Sato T., Ito A.: Anti-arthritic action mechanisms of natural chondroitin sulfate in human articular chondrocytes and synovial fibroblasts. Biol. Pharm. Bull. 33(3), 410–414 (2010)PubMedCrossRefGoogle Scholar
  91. 91.
    Ouzzine M., Venkatesan N., Fournel-Gigleux S.: Proteoglycans and cartilage repair. in: proteoglycans, pp. 339–355. Springer, N. Y. (2012)CrossRefGoogle Scholar
  92. 92.
    Campbell E.J., Owen C.A.: The sulfate groups of chondroitin sulfate-and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J. Biol. Chem. 282(19), 14645–14654 (2007)PubMedCrossRefGoogle Scholar
  93. 93.
    Tat S.K., Pelletier J.-P., Vergés J., Lajeunesse D., Montell E., Fahmi H., Lavigne M., Martel-Pelletier J.: Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res. Ther. 9(6), R117 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sobal G., Dorotka R., Menzel J., Sinzinger H.: Uptake studies with chondrotropic 99mTc-chondroitin sulfate in articular cartilage. Implications for imaging osteoarthritis in the knee. Nucl Med Biol. 40(8), 1013–1017 (2013). doi: 10.1016/j.nucmedbio.2013.07.007 PubMedGoogle Scholar
  95. 95.
    Campo G.M., Avenoso A., Campo S., Ferlazzo A., Altavilla D., Micali C., Calatroni A.: Aromatic trap analysis of free radicals production in experimental collagen-induced arthritis in the rat: protective effect of glycosaminoglycans treatment. Free Radic. Res. 37(3), 257–268 (2003)PubMedCrossRefGoogle Scholar
  96. 96.
    Martínez-Calatrava M., Largo R., Herrero-Beaumont G.: Improvement of experimental accelerated atherosclerosis by chondroitin sulphate. Osteoarthr. Cartil. 18, S12–S16 (2010)PubMedCrossRefGoogle Scholar
  97. 97.
    Jain A., Gulbake A., Shilpi S., Jain A., Hurkat P., Jain S.K.: A new horizon in modifications of chitosan: syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst. 30(2), 91–181 (2013)PubMedCrossRefGoogle Scholar
  98. 98.
    Subudhi M., Jain A., Jain A., Hurkat P., Shilpi S., Gulbake A., Jain S.: Eudragit S100 Coated Citrus Pectin nanoparticles for Colon targeting of 5-Fluorouracil. Materials. 8(3), 832–849 (2015)CrossRefGoogle Scholar
  99. 99.
    Jain A., Jain S.K.: Environmentally Responsive Chitosan-based Nanocarriers (CBNs). Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers. 3, 105 (2015)CrossRefGoogle Scholar
  100. 100.
    Bauerova K., Ponist S., Kuncirova V., Mihalova D., Paulovicova E., Volpi N.: Chondroitin sulfate effect on induced arthritis in rats. Osteoarthr. Cartil. 19(11), 1373–1379 (2011)PubMedCrossRefGoogle Scholar
  101. 101.
    Gabay C., Medinger-Sadowski C., Gascon D., Kolo F., Finckh A.: Symptomatic effects of chondroitin 4 and chondroitin 6 sulfate on hand osteoarthritis: A randomized, double-blind, placebo-controlled clinical trial at a single center. Arthritis & Rheumatism. 63(11), 3383–3391 (2011)CrossRefGoogle Scholar
  102. 102.
    Nakasone Y., Watabe K., Watanabe K., Tomonaga A., Nagaoka I., Yamamoto T., Yamaguchi H.: Effect of a glucosamine-based combination supplement containing chondroitin sulfate and antioxidant micronutrients in subjects with symptomatic knee osteoarthritis: A pilot study. Exp Ther Med. 2(5), 893–899 (2011). doi: 10.3892/etm.2011.298 PubMedPubMedCentralGoogle Scholar
  103. 103.
    Chen L., Ling P., Jin Y., Zhang T.: Hyaluronic acid in combination with chondroitin sulfate and hyaluronic acid improved the degeneration of synovium and cartilage equally in rabbits with osteoarthritis. Drug discoveries & therapeutics. 5(4), 190–194 (2011)CrossRefGoogle Scholar
  104. 104.
    Kanzaki N., Saito K., Maeda A., Kitagawa Y., Kiso Y., Watanabe K., Tomonaga A., Nagaoka I., Yamaguchi H.: Effect of a dietary supplement containing glucosamine hydrochloride, chondroitin sulfate and quercetin glycosides on symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled study. J. Sci. Food Agric. 92(4), 862–869 (2012)PubMedCrossRefGoogle Scholar
  105. 105.
    Perea S.: Nutritional management of osteoarthritis. Compendium (Yardley, PA). 34(5), E4 (2012)Google Scholar
  106. 106.
    Lascelles B., DePuy V., Thomson A., Hansen B., Marcellin-Little D., Biourge V., Bauer J.: Evaluation of a therapeutic diet for feline degenerative joint disease. J. Vet. Intern. Med. 24(3), 487–495 (2010)PubMedCrossRefGoogle Scholar
  107. 107.
    DiNubile N.A.: A potential role for Avocado-and Soybean-Based Nutritional supplements in the management of Osteoarthritis. Physician and Sportsmedicine. 38(2), 71–81 (2010)PubMedCrossRefGoogle Scholar
  108. 108.
    Pavelka K., Coste P., Géher P., Krejci G.: Efficacy and safety of piascledine 300 versus chondroitin sulfate in a 6 months treatment plus 2 months observation in patients with osteoarthritis of the knee. Clin. Rheumatol. 29(6), 659–670 (2010)PubMedCrossRefGoogle Scholar
  109. 109.
    Richette P.: Management of osteoarthritis: oral therapies. Rev Prat. 62(5), 654–660 (2012)PubMedGoogle Scholar
  110. 110.
    Sofat N., Beith I., Anilkumar P.G., Mitchell P.: Recent clinical evidence for the treatment of osteoarthritis: What we have learned. Reviews on recent clinical trials. 6(2), 114–126 (2011)PubMedCrossRefGoogle Scholar
  111. 111.
    Diehl P., Gerdesmeyer L., Schauwecker J., Kreuz P., Gollwitzer H., Tischer T.: Conservative therapy of osteoarthritis. Der Orthopade. 42(2), 125–139 (2013)PubMedCrossRefGoogle Scholar
  112. 112.
    Railhac J., Zaim M., Saurel A., Vial J., Fournie B.: Effect of 12 months treatment with chondroitin sulfate on cartilage volume in knee osteoarthritis patients: a randomized, double-blind, placebo-controlled pilot study using MRI. Clin. Rheumatol. 31(9), 1347–1357 (2012)PubMedCrossRefGoogle Scholar
  113. 113.
    Guilherme M.R., Reis A.V., Alves B.R., Kunita M.H., Rubira A.F., Tambourgi E.B.: Smart hollow microspheres of chondroitin sulfate conjugates and magnetite nanoparticles for magnetic vector. J. Colloid Interface Sci. 352(1), 107–113 (2010)PubMedCrossRefGoogle Scholar
  114. 114.
    Wang S.-C., Chen B.-H., Wang L.-F., Chen J.-S.: Characterization of chondroitin sulfate and its interpenetrating polymer network hydrogels for sustained-drug release. Int. J. Pharm. 329(1), 103–109 (2007)PubMedCrossRefGoogle Scholar
  115. 115.
    Strehin I., Nahas Z., Arora K., Nguyen T., Elisseeff J.: A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials. 31(10), 2788–2797 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Oprea A.-M., Profire L., Lupusoru C.E., Ghiciuc C.M., Ciolacu D., Vasile C.: Synthesis and characterization of some cellulose/chondroitin sulphate hydrogels and their evaluation as carriers for drug delivery. Carbohydr. Polym. 87(1), 721–729 (2012)CrossRefGoogle Scholar
  117. 117.
    Li W., Li X., Su H., Zhao S., Li Y., Hu J.: Facile synthesis of chondroitin sulfate-stabilized gold nanoparticles. Mater. Chem. Phys. 125(3), 518–521 (2011)CrossRefGoogle Scholar
  118. 118.
    Jiang T., Petersen R.R., Call G., Ofek G., Gao J., Yao J.Q.: Development of chondroitin sulfate encapsulated PLGA microsphere delivery systems with controllable multiple burst releases for treating osteoarthritis. Journal of biomedical materials research. Part B, Applied biomaterials. 97(2), 355–363 (2011). doi: 10.1002/jbm.b.31822 PubMedCrossRefGoogle Scholar
  119. 119.
    Craciunescu O., Moldovan L., Moisei M., Trif M.: Liposomal formulation of chondroitin sulfate enhances its antioxidant and anti-inflammatory potential in L929 fibroblast cell line. Journal of liposome research. 23(2), 145–153 (2013)PubMedCrossRefGoogle Scholar
  120. 120.
    Bagari R., Bansal D., Gulbake A., Jain A., Soni V., Jain S.K.: Chondroitin sulfate functionalized liposomes for solid tumor targeting. J. Drug Target. 19(4), 251–257 (2011)PubMedCrossRefGoogle Scholar
  121. 121.
    Onishi H., Yoshida R., Matsuyama M.: Chondroitin sulfate-glycyl-prednisolone conjugate as arthritis targeting system: localization and drug release in inflammatory joints. Biol. Pharm. Bull. 37(10), 1641–1649 (2014)PubMedCrossRefGoogle Scholar
  122. 122.
    Avachat A., Kotwal V.: Design and evaluation of matrix-based controlled release tablets of diclofenac sodium and chondroitin sulphate. AAPS PharmSciTech. 8(4), 51–56 (2007)PubMedCentralCrossRefGoogle Scholar
  123. 123.
    Huang S.-J., Sun S.-L., Feng T.-H., Sung K.-H., Lui W.-L., Wang L.-F.: Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier. Eur. J. Pharm. Sci. 38(1), 64–73 (2009)PubMedCrossRefGoogle Scholar
  124. 124.
    Lin Y.-J., Liu Y.-S., Yeh H.-H., Cheng T.-L., Wang L.-F.: Self-assembled poly (ε-caprolactone)-g-chondroitin sulfate copolymers as an intracellular doxorubicin delivery carrier against lung cancer cells. Int. J. Nanomedicine. 7, 4169 (2012)PubMedPubMedCentralGoogle Scholar
  125. 125.
    Bishnoi M., Jain A., Hurkat P., Jain S.K.: Aceclofenac-loaded chondroitin sulfate conjugated SLNs for effective management of osteoarthritis. J. Drug Target. 22(9), 805–812 (2014)PubMedCrossRefGoogle Scholar
  126. 126.
    Lee E.S., Park K.-H., Kang D., Park I.S., Min H.Y., Lee D.H., Kim S., Kim J.H., Na K.: Protein complexed with chondroitin sulfate in poly (lactide- co-glycolide) microspheres. Biomaterials. 28(17), 2754–2762 (2007)PubMedCrossRefGoogle Scholar
  127. 127.
    Santo V.E., Duarte A.R.C., Gomes M.E., Mano J.F., Reis R.L.: Hybrid 3D structure of poly (d, l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. J. Supercrit. Fluids. 54(3), 320–327 (2010)CrossRefGoogle Scholar
  128. 128.
    Singh, J.A., Noorbaloochi, S., MacDonald, R., Maxwell, L.J.: Chondroitin for osteoarthritis. Cochrane Database Syst. Rev. (2015). doi: 10.1002/14651858.CD005614.pub2
  129. 129.
    Uebelhart D., Malaise M., Marcolongo R., DeVathaire F., Piperno M., Mailleux E., Fioravanti A., Matoso L., Vignon E.: Intermittent treatment of knee osteoarthritis with oral chondroitin sulfate: a one-year, randomized, double-blind, multicenter study versus placebo. Osteoarthr. Cartil. 12(4), 269–276 (2004)PubMedCrossRefGoogle Scholar
  130. 130.
    Mazieres B., Combe B., Phan Van A., Tondut J., Grynfeltt M.: Chondroitin sulfate in osteoarthritis of the knee: a prospective, double blind, placebo controlled multicenter clinical study. J. Rheumatol. 28(1), 173–181 (2001)PubMedGoogle Scholar
  131. 131.
    Sorgente N.: Nakamura. R.M: Methods for treating arthritis using collagen type II, glucosamine chondroitin sulfate, and compositions. US 6162787 A (2000)Google Scholar
  132. 132.
    Nimni M.E.: Method for alleviating arthritis in mammals. US 6372794 B1 (2002)Google Scholar
  133. 133.
    Derrieu G.: Pougnas. J.L: Chondroitin sulphate and chitosan compositions for treating rheumatic disorders. US 6599888 B1 (2003)Google Scholar
  134. 134.
    Miyasaka M., Kawashima H.: Persulfated oligosaccharide acting on selectins and chemokine. US 20060211651 A1 (2006)Google Scholar
  135. 135.
    Aspberg A., Heinegaerd D., Johnson A., Kvist A.: Use of chondroitin sulphate e (cs-e) for the treatment diseases or conditions related to collagen fibril formation. In. Google Patents (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mamta Bishnoi
    • 1
  • Ankit Jain
    • 1
  • Pooja Hurkat
    • 1
  • Sanjay K. Jain
    • 1
  1. 1.Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical SciencesDr. Hari Singh Gour Central UniversitySagarIndia

Personalised recommendations