Glycoconjugate Journal

, Volume 33, Issue 5, pp 725–733 | Cite as

Sialylation and desialylation dynamics of monocytes upon differentiation and polarization to macrophages

  • Dan Wang
  • Evgeny Ozhegov
  • Lin Wang
  • Aimin Zhou
  • Huan Nie
  • Yu Li
  • Xue-Long SunEmail author
Original Article


Sialic acids (SAs) often exist as the terminal sugars of glycan structures of cell surface glycoproteins and glycolipids. The level and linkages of cell surface SAs, which are controlled by both sialylation and desialylation processes and environment cues, can dramatically impact cell properties and represent different cellular status. In this study, we systematically examined the sialylation and desialylation profiles of THP-1 monocytes after differentiation to M0 macrophages, and polarization to M1 and M2 macrophages by the combination of LC-MS/MS, flow cytometry and confocal microscopy. Interestingly, both α2-3- and α2-6-linked SAs on the cell surface decreased after monocytes were differentiated to macrophages, which was in accordance with the increased level of free SA in the cell culture medium and the elevated activity of endogenous Neu1 sialidase. Meanwhile, the siaoglycoconjugates inside the cells increased as confirmed by confocal microscopy and the total SA inside the cells increased as determined by LC-MS/MS. Western blot analysis showed higher expression levels of sialyltransferases, including ST3Gal-I, ST3Gal-V, ST6Gal-I and ST6GalNAc-II. Further, upon polarization, the cell surface sialylation levels of M1 and M2 macrophages remained the same as M0 macrophages, while a slight decrease of cellular SAs in the M1 macrophages but increase in the M2 macrophages were confirmed by LC-MS/MS.


Monocyte Differentiation, polarization Macrophage Sialic acid Sialylation Desialylation 



This work was supported by Research Fund from the Center for Gene Regulation in Health and Disease (GRHD) at Cleveland State University supported by Ohio Department of Development (ODOD). The authors acknowledge the National Science Foundation Major Research Instrumentation Grant (CHE-0923398) for supporting Q-Trap 5500 mass spectrometer instrument, the National Institution of Health for supporting Nikon A1Rsi confocal microscope (1S10OD010381). This work was partially supported by grants from The National Natural Science Foundation of China (31328006). D. Wang appreciates the Doctoral Dissertation Research Award from Cleveland State University. H. Nie appreciates the China Oversea Scholar Award from China Scholarship Council.

Supplementary material

10719_2016_9664_MOESM1_ESM.pdf (532 kb)
ESM 1 (PDF 531 kb)


  1. 1.
    Sica A., Mantovani A.: Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mosser D.M., Edwards J.P.: Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gordon S., Plüddemann A., Martinez Estrada F.: Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev. 262, 36–55 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lyons J.J., Milner J.D., Rosenzweig S.D.: Glycans instructing immunity: the emerging role of altered glycosylation in clinical immunology. Front. Pediatr. 3, 54 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen X., Varki A.: Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 5, 163–176 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Varki A., Gagneux P.: Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 1253, 16–36 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tjiu J.W., Chen J.S., Shun C.T., Lin S.J., Liao Y.H., Chu C.Y., Tsai T.F., Chiu H.C., Dai Y.S., Inoue H., Yang P.C., Kuo M.L., Jee S.H.: Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J. Invest. Dermatol. 129, 1016–1025 (2009)CrossRefPubMedGoogle Scholar
  8. 8.
    Stewart D.A., Yang Y., Makowski L., Troester M.A.: Basal-like breast cancer cells induce phenotypic and genomic changes in macrophages. Mol. Cancer Res. 10, 727–738 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang D., Nie H., Ozhegov E., Wang L., Zhou A., Li Y., Sun X.L.: Globally profiling sialylation status of macrophages upon statin treatment. Glycobiology. 25, 1007–1015 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nan X., Carubelli I., Stamatos N.M.: Sialidase expression in activated human T lymphocytes influences production of IFN-gamma. J. Leukoc. Biol. 81, 284–296 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    Katoh S., Miyagi T., Taniguchi H., Matsubara Y., Kadota J., Tominaga A., Kincade P.W., Matsukura S., Kohno S.: Cutting edge: an inducible sialidase regulates the hyaluronic acid binding ability of CD44-bearing human monocytes. J. Immunol. 162, 5058–5061 (1999)PubMedGoogle Scholar
  12. 12.
    Stamatos N.M., Liang F., Nan X., Landry K., Cross A.S., Wang L.X., Pshezhetsky A.V.: Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. FEBS J. 272, 2545–2556 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Chen R.F., Wang L., Cheng J.T., Yang K.D.: Induction of IFNα or IL-12 depends on differentiation of THP-1 cells in dengue infections without and with antibody enhancement. BMC Infect. Dis. 12, 340 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schwende H., Fitzke E., Ambs P., Dieter P.: Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J. Leukoc. Biol. 59, 555–561 (1996)PubMedGoogle Scholar
  15. 15.
    Cohen M., Varki A.: The sialome-far more than the sum of its parts. OMICS. 14, 455–464 (2010)CrossRefPubMedGoogle Scholar
  16. 16.
    Monti E., Bonten E., D’Azzo A., Bresciani R., Venerando B., Borsani G., Schauer R., Tettamanti G.: Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv. Carbohydr. Chem. Biochem. 64, 403–479 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    Miyagi T., Tsuiki S.: Rat-liver lysosomal sialidase. Solubilization, substrate specificity and comparison with the cytosolic sialidase. Eur. J. Biochem. 141, 75–81 (1984)CrossRefPubMedGoogle Scholar
  18. 18.
    Gordon S., Taylor P.R.: Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    Heino J., Larjava H., Penttinen R.: Changes in the expression of cell surface sialoglycoproteins during transition of human monocytes into macrophages. FEBS Lett. 206, 218–222 (1986)CrossRefPubMedGoogle Scholar
  20. 20.
    Liang F., Seyrantepe V., Landry K., Ahmad R., Ahmad A., Stamatos N.M., Pshezhetsky A.V.: Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J. Biol. Chem. 281, 27526–27538 (2006)CrossRefPubMedGoogle Scholar
  21. 21.
    Seyrantepe V., Iannello A., Liang F., Kanshin E., Jayanth P., Samarani S., Szewczuk M.R., Ahmad A., Pshezhetsky A.V.: Regulation of phagocytosis in macrophages by neuraminidase 1. J. Biol. Chem. 285, 206–215 (2010)CrossRefPubMedGoogle Scholar
  22. 22.
    Videira P.A., Amado I.F., Crespo H.J., Algueró M.C., Dall’Olio F., Cabral M.G., Trindade H.: Surface alpha 2-3- and alpha 2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis. Glycoconj. J. 25, 259–268 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    Trottein F., Schaffer L., Ivanov S., Paget C., Vendeville C., Cazet A., Groux-Degroote S., Lee S., Krzewinski-Recchi M.A., Faveeuw C., Head S.R., Gosset P., Delannoy P.: Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages. Glycoconj. J. 26, 1259–1274 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gracheva E.V., Samovilova N.N., Golovanova N.K., Andreeva E.R., Andrianova I.V., Tararak E.M., Prokazova N.V.: Activation of ganglioside GM3 biosynthesis in human monocyte/macrophages during culturing in vitro. Biochemistry (Mosc). 72, 772–777 (2007)CrossRefGoogle Scholar
  25. 25.
    Gracheva E.V., Samovilova N.N., Golovanova N.K., Kashirina S.V., Shevelev A., Rybalkin I., Gurskaya T., Vlasik T.N., Andreeva E.R., Prokazova N.V.: Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Mol. Cell. Biochem. 330, 121–129 (2009)CrossRefPubMedGoogle Scholar
  26. 26.
    Martinez F.O., Gordon S., Locati M., Mantovani A.: Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006)CrossRefPubMedGoogle Scholar
  27. 27.
    Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M.: M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000)CrossRefPubMedGoogle Scholar
  28. 28.
    Martinez F.O., Gordon S.: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M.: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004)CrossRefPubMedGoogle Scholar
  30. 30.
    Kaneko Y., Nimmerjahn F., Ravetch J.V.: Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 313, 670–673 (2006)CrossRefPubMedGoogle Scholar
  31. 31.
    Cowing C., Chapdelaine J.M.: T cells discriminate between Ia antigens expressed on allogeneic accessory cells and B cells: a potential function for carbohydrate side chains on Ia molecules. Proc. Natl. Acad. Sci. U. S. A. 80, 6000–6004 (1983)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Boog C.J., Neefjes J.J., Boes J., Ploegh H.L., Melief C.J.: Specific immune responses restored by alteration in carbohydrate chains of surface molecules on antigen-presenting cells. Eur. J. Immunol. 19, 537–542 (1989)CrossRefPubMedGoogle Scholar
  33. 33.
    Crespo H.J., Cabral M.G., Teixeira A.V., Lau J.T., Trindade H., Videira P.A.: Effect of sialic acid loss on dendritic cell maturation. Immunology. 128, e621–e631 (2009)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dan Wang
    • 1
  • Evgeny Ozhegov
    • 1
  • Lin Wang
    • 1
  • Aimin Zhou
    • 1
  • Huan Nie
    • 2
  • Yu Li
    • 2
  • Xue-Long Sun
    • 1
    Email author
  1. 1.Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD)Cleveland State UniversityClevelandUSA
  2. 2.School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations