Skip to main content
Log in

Disubstituted naphthyl β-D-xylopyranosides: Synthesis, GAG priming, and histone acetyltransferase (HAT) inhibition

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Xylosides are a group of compounds that can induce glycosaminoglycan (GAG) chain synthesis independently of a proteoglycan core protein. We have previously shown that the xyloside 2-(6-hydroxynaphthyl)β-D-xylopyranoside has a tumor-selective growth inhibitory effect both in vitro and in vivo, and that the effect in vitro was correlated to a reduction in histone H3 acetylation. In addition, GAG chains have previously been reported to inhibit histone acetyltransferases (HAT). To investigate if xylosides, or the corresponding xyloside-primed GAG chains, can be used as HAT inhibitors, we have synthesized a series of naphthoxylosides carrying structural motifs similar to the aromatic moieties of the known HAT inhibitors garcinol and curcumin, and studied their biological activities. Here, we show that the disubstituted naphthoxylosides induced GAG chain synthesis, and that the ones with at least one free phenolic group exhibited moderate HAT inhibition in vitro, without affecting histone H3 acetylation in cell culture. The xyloside-primed GAG chains, on the other hand, had no effect on HAT activity, possibly explaining why the effect of the xylosides on histone H3 acetylation was absent in cell culture as the xylosides were recruited for GAG chain synthesis. Further investigations are required to find xylosides that are effective HAT inhibitors or xylosides producing GAG chains with HAT inhibitory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Scheme 1
Fig. 1
Fig 2
Fig. 3
Fig 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Anacardic acid

β4GalT7:

β-1,4-galactosyltransferase 7

CCD-1095Sk:

Human breast fibroblasts

CS:

Chondroitin sulfate

DS:

Dermatan sulfate

GAG:

Glycosaminoglycan

HCC70:

Human breast carcinoma cells

HDAC:

Histone deacetylase

HS:

Heparan sulfate

HAT:

Histone acetyltransferase

KAT:

Lysine acetyltransferase

PCAF:

p300/CBP-associated factor

PG:

Proteoglycan

pgsA-745:

Xylosyltransferase-deficient Chinese hamster ovarian cells

p300:

E1A binding protein p300

References

  1. Yip G.W., Smollich M., Götte M.: Mol. Cancer Ther. 5(2139–2148), (2006)

  2. Fuster M.M., Esko J.D.: Nature reviews. Cancer. 5, 521–542 (2005)

    Google Scholar 

  3. Timar J., Lapis K., Dudas J., Sebestyen A., Kopper L., Kovalszky I.: Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin. Cancer Biol. 12(3), 173–186 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Sasisekharan R., Shriver Z., Venkataraman G., Narayanasami U.: Nature reviews. Cancer. 2, 521–528 (2002)

    CAS  PubMed  Google Scholar 

  5. Schwartz N.B., Rodén L., Dorfman A.: Biosynthesis of chondroitin sulfate: Interaction between xylosyltransferase and galactosyltransferase. Biochem. Biophys. Res. Commun. 56(3), 717–724 (1974)

    Article  CAS  PubMed  Google Scholar 

  6. Robinson H.C., Brett M.J., Tralaggan P.J., Lowther D.A., Okayama M.: Effect of D-xylose, β-D-xylosides, and β-D-galactosides on chondroitin sulfate biosynthesis in embryonic chicken cartilage. Biochem. J. 148(1), 25–34 (1975)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Almeida, R., Levery, S.B., Mandel, U., Kresse, H., Schwientek, T., Bennett, E.P., Clausen, H.: Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-galactosyltransferase I. A seventh member of the human β4-galactosyltransferase gene family. Journal of Biological Chemistry 274(37), 26165–26171 (1999).

  8. Galligani L., Hopwood J., Schwartz N.B., Dorfman A.: Stimulation of synthesis of free chondroitin sulfate chains by β-D-xylosides in cultured cells. J. Biol. Chem. 250(14), 5400–5406 (1975)

    CAS  PubMed  Google Scholar 

  9. Robinson H.C., Lindahl U.: Effect of cycloheximide, β-D-xylosides, and β-D-galactosides on heparin biosynthesis in mouse mastocytoma. Biochem. J. 194(2), 575–586 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stevens R.L., Austen K.F.: Effect of p-nitrophenyl-β-D-xyloside on proteoglycan and glycosaminoglycan biosynthesis in rat serosal mast cell cultures. J. Biol. Chem. 257(1), 253–259 (1982)

    CAS  PubMed  Google Scholar 

  11. Sobue, M., Habuchi, H., Ito, K., Yonekura, H., Oguri, K., Sakurai, K., Kamohara, S., Ueno, Y., Noyori, R., Suzuki, S.: β-D-Xylosides and their analogs as artificial initiators of glycosaminoglycan chain synthesis. Aglycone-related variation in their effectiveness in vitro and in ovo. Biochemical Journal 241(2), 591–601 (1987).

  12. Lugemwa F.N., Esko J.D.: J. Biol. Chem. 266, 6674–6677 (1991)

    CAS  PubMed  Google Scholar 

  13. Fritz T.A., Lugemwa F.N., Sarkar A.K., Esko J.D.: J. Biol. Chem. 269, 300–307 (1994)

    CAS  PubMed  Google Scholar 

  14. Mani K., Belting M., Ellervik U., Falk N., Svensson G., Sandgren S., Cheng F., Fransson L.-A.: Tumor attenuation by 2-(6-hydroxynaphthyl)-β-D-xylopyranoside requires priming of heparan sulfate and nuclear targeting of the products. Glycobiology. 14(5), 387–397 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Nilsson U., Johnsson R., Fransson L.-A., Ellervik U., Mani K.: Attenuation of Tumor Growth by Formation of Antiproliferative Glycosaminoglycans Correlates with Low Acetylation of Histone H3. Cancer Res. 70(9), 3771–3779 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Shahbazian M.D., Grunstein M.: Functions of site-specific histone acerylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Roth S.Y., Denu J.M., Allis C.D.: Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Grunstein M.: Histone acetylation in chromatin structure and transcription. Nature. 389(6649), 349–352 (1997)

    Article  CAS  PubMed  Google Scholar 

  19. Geutjes E.J., Bajpe P.K., Bernards R.: Targeting the epigenome for treatment of cancer. Oncogene. 31(34), 3827–3844 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Farria A., Li W., Dent S.Y.R.: KATs in cancer: functions and therapies. Oncogene. 34(38), 4901–4913 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glozak M.A., Sengupta N., Zhang X.H., Seto E.: Acetylation and deacetylation of non-histone proteins. Gene. 363, 15–23 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Jones P.: Development of second generation epigenetic agents. Medchemcomm. 3(2), 135–161 (2012)

    Article  CAS  Google Scholar 

  23. Biancotto C., Frige G., Minucci S.: Histone modification therapy of cancer. Advances in Genetics (Epigenetics and Cancer, Part A). 70, 341–386 (2010)

    Article  CAS  Google Scholar 

  24. Minucci, S., Pelicci, P.G.: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6(1), 38–51 (2006).

  25. Watt S.A., South A.P.: Tipping the balance between life and death: targeting histone acetylation for cancer therapy. Drug Delivery Letters. 3(2), 149–158 (2013)

    Article  CAS  Google Scholar 

  26. West A.C., Johnstone R.W.: New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 124(1), 30–39 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furdas S.D., Kannan S., Sippl W., Jung M.: Small Molecule Inhibitors of Histone Acetyltransferases as Epigenetic Tools and Drug Candidates. Arch. Pharm. 345(1), 7–21 (2012)

    Article  CAS  Google Scholar 

  28. Dal Piaz F., Vassallo A., Rubio O.C., Castellano S., Sbardella G., De Tommasi N.: Chemical biology of Histone acetyltransferase natural compounds modulators. Mol. Divers. 15(2), 401–416 (2011)

    Article  CAS  Google Scholar 

  29. Balasubramanyam K., Swaminathan V., Ranganathan A., Kundu T.K.: Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem. 278(21), 19134–19140 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Balasubramanyam K., Varier R.A., Altaf M., Swaminathan V., Siddappa N.B., Ranga U., Kundu T.K.: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279(49), 51163–51171 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Balasubramanyam K., Altaf M., Varier R.A., Swaminathan V., Ravindran A., Sadhale P.P., Kundu T.K.: Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279(32), 33716–33726 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Vernarecci S., Tosi F., Filetici P.: Tuning acetylated chromatin with HAT inhibitors: a novel tool for therapy. Epigenetics. 5(2), 105–111 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Buczek-Thomas J.A., Hsia E., Rich C.B., Foster J.A., Nugent M.A.: Inhibition of histone acetyltransferase by glycosaminoglycans. J. Cell. Biochem. 105(1), 108–120 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Purushothaman A., Hurst D.R., Pisano C., Mizumoto S., Sugahara K., Sanderson R.D.: Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J. Biol. Chem. 286(35), 30377–30383 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacquinet J.-C.: Synthesis of a set of sulfated and/or phosphorylated oligosaccharide derivatives from the carbohydrate‚Äìprotein linkage region of proteoglycans. Carbohyd. Res. 341(10), 1630–1644 (2006)

    Article  CAS  Google Scholar 

  36. Siegbahn A., Manner S., Persson A., Tykesson E., Holmqvist K., Ochocinska A., Roennols J., Sundin A., Mani K., Westergren-Thorsson G., Widmalm G., Ellervik U.: Rules for priming and inhibition of glycosaminoglycan biosynthesis; probing the β4GalT7 active site. Chem. Sci. 5(9), 3501–3508 (2014)

    Article  CAS  Google Scholar 

  37. Siegbahn A., Thorsheim K., Staahle J., Manner S., Hamark C., Persson A., Tykesson E., Mani K., Westergren-Thorsson G., Widmalm G., Ellervik U.: Exploration of the active site of β4GalT7: modifications of the aglycon of aromatic xylosides. Organic & Biomolecular Chemistry. 13(11), 3351–3362 (2015)

    Article  CAS  Google Scholar 

  38. Holmqvist K., Persson A., Johnsson R., Lofgren J., Mani K., Ellervik U.: Synthesis and biology of oligo-ethylene glycol linked naphtho-xylosides. Bioorg. Med. Chem. 21(11), 3310–3317 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. Farndale R.W., Sayers C.A., Barrett A.J.: A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9(4), 247–248 (1982)

    Article  CAS  PubMed  Google Scholar 

  40. Sibi M.P., Snieckus V.: The directed ortho lithiation of O-aryl carbamates. An anionic equivalent of the Fries rearrangement. Journal of Organic Chemistry. 48(11), 1935–1937 (1983)

    CAS  Google Scholar 

  41. Snieckus V.: Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chemical Reviews (Washington, DC, United States). 90(6), 879–933 (1990)

    Article  CAS  Google Scholar 

  42. Based on ratio seen in 1H-NMR spectrum

  43. Ochocinska A., Siegbahn A., Ellervik U.: HCl/DMF for enhanced chemoselectivity in catalytic hydrogenolysis reactions. Tetrahedron Lett. 51(39), 5200–5202 (2010)

    Article  CAS  Google Scholar 

  44. Esko J.D., Stewart T.E., Taylor W.H.: Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Nat. Acad. Sci. U. S. A. 82(10), 3197–3201 (1985)

    Article  CAS  Google Scholar 

  45. Arif M., Pradhan S.K., Thanuja G.R., Vedamurthy B.M., Agrawal S., Dasgupta D., Kundu T.K.: Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J. Med. Chem. 52(2), 267–277 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. Mantelingu K., Reddy B.A., Swaminathan V., Kishore A.H., Siddappa N.B., Kumar G.V., Nagashankar G., Natesh N., Roy S., Sadhale P.P., Ranga U., Narayana C., Kundu T.K.: Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chemistry & biology. 14(6), 645–657 (2007)

    Article  CAS  Google Scholar 

  47. Costi R., Di Santo R., Artico M., Miele G., Valentini P., Novellino E., Cereseto A.: Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase. J. Med. Chem. 50(8), 1973–1977 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Alfred Österlund Foundation, the Crafoord Foundation, the Evy and Gunnar Sandberg Foundation, the Foundation of the Hedda and John Forssman Fund, Greta and John Kock, the Lars Hiertas Memorial Foundation, Lund University, the Magnus Bergwall Foundation, the Medical Faculty of Lund University, the Royal Physiographic Society in Lund, the Swedish Cancer Society, the Swedish Heart-Lung Foundation, the Swedish Medical Research Council, the Swedish Research Council, and the Åhlén Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ellervik.

Additional information

Karin Thorsheim and Andrea Persson contributed equally to this manuscript.

Electronic supplementary material

ESM 1

(PDF 2682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorsheim, K., Persson, A., Siegbahn, A. et al. Disubstituted naphthyl β-D-xylopyranosides: Synthesis, GAG priming, and histone acetyltransferase (HAT) inhibition. Glycoconj J 33, 245–257 (2016). https://doi.org/10.1007/s10719-016-9662-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9662-6

Keywords

Navigation