Skip to main content
Log in

Glycosylation is crucial for a proper catalytic site organization in human glucocerebrosidase

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Gaucher disease, an autosomal recessive disorder, is caused by a deficiency of glucocerebrosidase (GCase) enzyme, a peripheral membrane-associated glycoprotein that hydrolyses glucosylceramide in lysosomes. Glycosylation is essential for the development of a catalytically active enzyme, specifically in the first site, located at Asn19. However, both the molecular basis of the relevance of N-glycosylation over GCase activity and the effects of glycosylation over its structure and dynamics are still not fully understood. Thus, the present work evaluated GCase enzyme in increasing glycosylation content using triplicate unbiased molecular dynamics simulations. Accordingly, the N-linked glycan chains caused local conformational stabilization effects over the protein, as well as in regions flanking the enzyme catalytic dyad. In the case of the Asn19-linked glycan, it also occurred around region 438–444, where one of the most prevalent GCase mutations is found. Markedly, an increasing catalytic dyad organization was related to increasing glycosylation contents, offering the first atomic-level explanation for the experimental observation that GCase activity is controlled by glycosylation, especially at Asn19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brady R.O., Kanfer J., Shapiro D.: The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem. 240, 39–43 (1965)

    CAS  PubMed  Google Scholar 

  2. Grabowski G.A.: Gaucher disease and other storage disorders. Hematology Am Soc Hematol Educ Program. 2012, 13–18 (2012)

    PubMed  Google Scholar 

  3. Futerman A.H., Meer G.V.: The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 5, 554–565 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Neufeld E.F.: Lysosomal storage diseases. Annu Rev Biochem. 60, 257–280 (1991)

    Article  CAS  PubMed  Google Scholar 

  5. Hruska K.S., LaMarca M.E., Scott C.R., Sidransky E.: Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat. 29, 567–583 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. Siebert M., Bock H., Michelin-Tirelli K., Coelho J.C., Giugliani R., Saraiva-Pereira M.L.: Novel mutations in the glucocerebrosidase gene of brazilian patients with gaucher disease. JIMD Rep. 9, 7–16 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beutler E.: Gaucher disease: multiple lessons from a single gene disorder. Acta Paediatr Suppl. 95, 103–109 (2006)

    Article  PubMed  Google Scholar 

  8. Miao S., McCarter J.D., Grace M.E., Grabowski G.A., Aebersold R., Withers S.G.: Identification of Glu340 as the active-site nucleophile in human glucocerebrosidase by use of electrospray tandem mass spectrometry. J Biol Chem. 269, 10975–10978 (1994)

    CAS  PubMed  Google Scholar 

  9. Durand P., Lehn P., Callebaut I., Fabrega S., Henrissat B., Mornon J.P.: Active-site motifs of lysosomal acid hydrolases: invariant features of clan GH-A glycosyl hydrolases deduced from hydrophobic cluster analysis. Glycobiology. 7, 277–284 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J.P., Davies G.: Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 92, 7090–7094 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabrega S., Durand P., Codogno P., Bauvy C., Delomenie C., Henrissat B., Martin B.M., McKinney C., Ginns E.I., Mornon J.P., Lehn P.: Human glucocerebrosidase: heterologous expression of active site mutants in murine null cells. Glycobiology. 10, (2000)

  12. Davies G., Henrissat B.: Structures and mechanisms of glycosyl hydrolases. Structure. 3, 853–859 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. Grace M.E., Grabowski G.A.: Human acid beta-glucosidase: glycosylation is required for catalytic activity. Biochem Biophys Res Commun. 168, 771–777 (1990)

    Article  CAS  PubMed  Google Scholar 

  14. Berg-Fussman A., Grace M.E., Ioannou Y., Grabowski G.A.: Human acid beta-glucosidase. N-Glycosylation site occupancy and the effect of glycosylation on enzymatic activity. J Biol Chem. 269, 14861–14866 (1993)

    Google Scholar 

  15. Bergmann J.E., Grabowski G.A.: Posttranslational processing of human lysosomal acid beta-glucosidase: a continuum of defects in gaucher disease type 1 and type 2 fibroblasts. Am J Hum Genet. 44, 741–750 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Erickson A.H., Ginns E.I., Barranger J.A.: Biosynthesis of the lysosomal enzyme glucocerebrosidase. J Biol Chem. 260, 14319–14324 (1985)

    CAS  PubMed  Google Scholar 

  17. Grabowski G.A., Gatt S., Horowitz M.: Acid beta-glucosidase: enzymology and molecular biology of gaucher disease. Crit Rev Biochem Mol Biol. 25, 385–414 (1990)

    Article  CAS  PubMed  Google Scholar 

  18. van-Weely S., J.M A., M.B.v L., J.C H., W.E D.-K., J.A B., J.M T., A.W S.: Function of oligosaccharide modification in glucocerebrosidase, a membrane-associated lysosomal hydrolase. Eur J Biochem. 191, 669–677 (1990)

    Article  CAS  PubMed  Google Scholar 

  19. Takasaki S., Murray G.J., Furbish F.S., Brady R.O., Barranger J.A., Kobata A.: Structure of the N-asparagine-linked oligosaccharide units of human placental beta-glucocerebrosidase. J Biol Chem. 259, 10112–10117 (1984)

    CAS  PubMed  Google Scholar 

  20. Pol-Fachin L., Verli H.: Assessment of glycoproteins dynamics from computer simulations. Mini Rev Org Chem. 8, 229–238 (2011)

    Article  CAS  Google Scholar 

  21. McNaught A.D.: International Union Of Pure And Applied Chemistry and International Union Of Biochemistry And Molecular Biology Joint Commission on biochemical nomenclature. Nomenclature of Carbohydrates Pure Appl Chem. 68, 1919–2008 (1996)

    CAS  Google Scholar 

  22. Schuttelkopf A.W.: Aalten D.M.v.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 60, 1355–1363 (2004)

    Article  PubMed  Google Scholar 

  23. Humphrey W., Dalke A., Schulten K.: VMD: visual molecular dynamics. J Mol Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Hess B., Kutznet C.: Spoel D.v.d., lindahl E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 4, 435–447 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Scott W.R.P., Hünenberger P.H., Tironi I.G., Mark A.E., Billeter S.R., Fennen J., Torda A.E., Huber T., Krüger P.: Gunsteren W.F.v.: the GROMOS biomolecular simulation program package. J Phys Chem A. 103, 3596–3607 (1999)

    Article  CAS  Google Scholar 

  26. Pol-Fachin L., Fernandes C.L., Verli H.: GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Carbohydr Res. 344, 491–500 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Brumshtein B., Wormald M.R., Silman I., Futerman A.H., Sussman J.L.: Structural comparison of differently glycosylated forms of acid-beta-glucosidase, the defective enzyme in gaucher disease. Acta Crystallogr D Biol Crystallogr. 62, 1458–1465 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Lütteke T., Bohne-Lang A., Loss A., Goetz T., Frank M.: Lieth C.W.v.d.: GLYCOSCIENCES.de: an internet portal to support glycomics and glycobiology research. Glycobiology. 16, 71R–81R (2006)

    Article  PubMed  Google Scholar 

  29. Fernandes C.L., Sachett L.G., Pol-Fachin L., Verli H.: GROMOS96 43a1 performance in predicting oligosaccharide conformational ensembles within glycoproteins. Carbohydr Res. 345, 663–671 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Verli H., Guimarães J.A.: Molecular dynamics simulation of a decasaccharide fragment of heparin in aqueous solution. Carbohydr Res. 339, 281–290 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Pol-Fachin L., Verli H.: Structural glycobiology of the major allergen of Artemisia vulgaris pollen, art v 1: O-glycosylation influence on the protein dynamics and allergenicity. Glycobiology. 22, 817–825 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Pol-Fachin L., Serrato R.V., Verli H.: Solution conformation and dynamics of exopolysaccharides from burkholderia species. Carbohydr Res. 345, 1922–1931 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Berendsen H.J.C., Grigera J.R., Straatsma T.P.: The missing term in effective pair potentials. J Chem Phys. 91, 6269–6271 (1987)

    Article  CAS  Google Scholar 

  34. Dolinsky T.J., Czodrowski P., Li H., Nielsen J.E., Jensen J.H., Klebe G., Baker N.A.: PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M.: LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 18, 1463–1472 (1997)

    Article  CAS  Google Scholar 

  36. Darden T., York D., Pedersen L.: Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J Chem Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  37. Berendsen H.J.C., Postma J.P.M., Dinola A., Haak J.R.: Molecular dynamics with coupling to an external bath. J Chem Phys. 81, 3684–3690 (1984)

    Article  CAS  Google Scholar 

  38. Petrescu A.J., Petrescu S.M., Dwek R.A., Wormald M.R.: A statistical analysis of N- and O-glycan linkage conformations from crystallographic data. Glycobiology. 9, 343–352 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. Ali M.M.N., Aich U., Varghese B., Pérez S., Imberty A., Loganathan D.: Conformational preferences of the aglycon moiety in models and analogs of GlcNAc-asn linkage: crystal structures and ab initio Quantum Chemical calculations of N-(beta-d-glycopyranosyl)haloacetamides. J Am Chem Soc. 130, 8317–8385 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. Jo S., Im W.: Glycan fragment database: a database of PDB-based glycan 3D-structures. Nucleic Acids Res. 41, D470–D474 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dvir H., Harel M., MacCarthy A.A., Toker L., SIlman I., Futerman A.H., Sussman J.L.: X-ray structure of human acid-β-glucosidase, the defective enzyme in gaucher disease. EMBO Rep. 4, 704–709 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Premkumar L., Sawkar A.R., Boldin-Adamsky S., Toker L., Silman I., Kelly J.W., Futerman A.H., Sussman J.L.: X-ray structure of human acid-β-glucosidase covalently bound to conduritol-B-Epoxide. J Biol Chem. 280, 23815–23819 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Liou B., Kazimierczuk A., Zhang M., Scott C.R., Hedge R.S., Grabowski G.A.: Analyses of variant acid beta-glucosidases: effects of gaucher disease mutations. J Biol Chem. 281, 4242–4253 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. Kacher Y., Brumshtein B., Boldin-Adamsky S., Toker L., Shainskaya A., Silman I., Sussman J.L., Futerman A.H.: Acid beta-glucosidase: insights from structural analysis and relevance to gaucher disease therapy. Biol Chem. 389, 1361–1369 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. Brumshtein B., Greenblatt H.M., Butters T.D., Shaaltiel Y., Aviezer D., Silman I., Futerman A.H., Sussman J.L.: Crystal structures of complexes of N-butyl- and N-nonyl-deoxynojirimycin bound to acid beta-glucosidase: insights into the mechanism of chemical chaperone action in gaucher disease. J Biol Chem. 282, 29052–29058 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Lieberman R.L., Wustman B.A., Huertas P., Powe A.C.J., Pine C.W., Khanna R., Schlossmacher M.G., Ringe D., Petsko G.A.: Structure of acid beta-glucosidase with pharmacological chaperone provides insight into gaucher disease. Nat Chem Biol. 3, 101–107 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. Orwig S.D., Tan Y.L., Grimster N.P., Yu Z., Powers E.T., Kelly J.W., Lieberman R.L.: Binding of 3,4,5,6-tetrahydroxyazepanes to the acid-β-glucosidase active site: implications for pharmacological chaperone design for gaucher disease. Biochemistry. 50, 10647–10657 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shaaltiel Y., Bartfeld D., Hashmueli S., Baum G., Brill-Almon E., Galili G., Dym O., Boldin-Adamsky S.A., Silman I., Sussman J.L., Futerman A.H., Aviezer D.: Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. Plant Biotechnol J. 5, 579–590 (2007)

    Article  CAS  PubMed  Google Scholar 

  49. Brumshtein B., Aguilar-Moncayo M., García-Moreno M.I., Ortiz-Mellet C., García-Fernandez J.M., Silman I., Shaaltiel Y., Aviezer D., Sussman J.L., Futerman A.H.: 6-amino-6-deoxy-5,6-di-N-(N′-octyliminomethylidene)nojirimycin: synthesis, biological evaluation, and crystal structure in complex with acid beta-glucosidase. Chembiochem. 10, 1480–1485 (2009)

    Article  CAS  PubMed  Google Scholar 

  50. Brumshtein B., Aguilar-Moncayo M., Benito J.M., García-Fernandez J.M., Silman I., Shaaltiel Y., Aviezer D., Sussman J.L., Futerman A.H., Ortiz-Mellet C.: Cyclodextrin-mediated crystallization of acid β-glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Org Biomol Chem. 9, 4160–4167 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. Lieberman R.L., D'Aquino J.A., Ringe D., Petsko G.A.: Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Biochemistry. 48, 4816–4827 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tekoah Y., Tzaban S., Kizhner T., Hainrichson M., Gantman A., Golembo M., Aviezer D., Shaaltiel Y.: Glycosylation and functionality of recombinant beta-glucocerebrosidase from various production systems. Biosci Rep. 33, e00071 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hanson S.R., Culyba E.K., Hsu T.L., Wong C.H., Kelly J.W., Powers E.T.: The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci U S A. 106, (2009)

  54. Lee H.S., Qi Y., Im W.: Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep. 5, 8926 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Offman M.N., Krol M., Silman I., Sussman J.L., Futerman A.H.: Molecular basis of reduced glucosylceramidase activity in the most common gaucher disease mutant, N370S. J Biol Chem. 285, 42105–42114 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zubrzycki I.Z., Borcz A., Wiacek M., Hagner W.: The studies on substrate, product and inhibitor binding to a wild-type and neuronopathic form of human acid-beta-glucosidase. J Mol Model. 13, 1133–1139 (2007)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laercio Pol-Fachin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – MCT, DCR-0037-1.06/13); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – MEC); Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS); Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE, grant number APQ-0398-1.06/13), and Fundo de Incentivo à Pesquisa e Eventos do Hospital de Clínicas de Porto Alegre (FIPE-HCPA).

Electronic Supplementary Material

ESM 1

(PDF 1235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pol-Fachin, L., Siebert, M., Verli, H. et al. Glycosylation is crucial for a proper catalytic site organization in human glucocerebrosidase. Glycoconj J 33, 237–244 (2016). https://doi.org/10.1007/s10719-016-9661-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9661-7

Keywords

Navigation