Skip to main content
Log in

Quantification of sialic acids in red meat by UPLC-FLD using indoxylsialosides as internal standards

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Herein we describe a UPLC-FLD-based method for the quantification of the sialic acid content of red meat, using a synthetic neuraminic acid derivative as an internal standard. X-Gal-α-2,6-N-propionylneuraminic acid was synthesized via a chemoenzymatic pathway and its hydrolytic stability was characterized. Known quantities of this compound were incubated with samples of red meat under sialic acid-releasing conditions. The released sialic acids were derivatized, analyzed by UPLC-FLD, and the Neu5Ac/Neu5Gc content of the meat sample was determined by comparison with the internal standard. A number of red meats were analyzed by this method with the following results (Neu5Ac μg/g tissue, Neu5Gc μg/g tissue ± s.d.): pork (68 ± 3, 15.2 ± 0.7), beef (69 ± 8, 36 ± 5), lamb (46 ± 2, 33 ± 1), rabbit (59 ± 2, 0.4 ± 0.4), and hare (50 ± 4, 1 ± 1). We envisage that this methodology will find application in investigating the health effects of dietary Neu5Gc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CMP:

cytidyl 5′-monophosphate

DCC:

dicyclohexylcarbodimide

EcNeuS:

Escherichia coli neuraminic acid synthase

ESI:

electrospray ionization

FLD:

fluorescence detector

Kdn:

α-2,6-keto-3-deoxy-d-glycero-d-galactononic acid

MALDI:

matrix-assisted laser desorption ionization

MS:

mass spectrometry

Neu5Ac:

N-acetylneuraminic acid

Neu5Gc:

N-glycolylneuraminic acid

Neu5Pr:

N-propylneuraminic acid

NHS:

N-hydroxysuccinimide

NmCSS:

Neisseria meningitidis CMP-sialic acid synthase

PdST6:

Photobacterium damselae α-2,6-sialyltransferase

OPD:

o-phenylenediamine

UPLC:

ultra high performance liquid chromatography

X-Gal:

5-bromo-4-chloro-indolyl-β-d-galactopyranoside

References

  1. Angata T., Varki A.: Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Schauer R.: Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Chen X., Varki A.: Advances in the biology and chemistry of sialic acids. ACS Chem. Biol. 5, 163–176 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lacomba R., Salcedo J., Alegria A., Barbera R., Hueso P., Matencio E., Lagarda M.J.: Effect of simulated gastrointestinal digestion on sialic acid and gangliosides present in human milk and infant formulas. J. Agric. Food Chem. 59, 5755–5762 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Lacomba R., Salcedo J., Alegria A., Jesus Lagarda M., Barbera R., Matencio E.: Determination of sialic acid and gangliosides in biological samples and dairy products: a review. J Pharmaceut Biomed. 51, 346–357 (2010)

    Article  CAS  Google Scholar 

  6. Nie H., Li Y., Sun X.L.: Recent advances in sialic acid-focused glycomics. J. Proteome. 75, 3098–3112 (2012)

    Article  CAS  Google Scholar 

  7. Chou H.H., Takematsu H., Diaz S., Iber J., Nickerson E., Wright K.L., Muchmore E.A., Nelson D.L., Warren S.T., Varki A.: A mutation in human CMP-sialic acid hydroxylase occurred after the homo-Pan divergence. P Natl Acad Sci USA. 95, 11751–11756 (1998)

    Article  CAS  Google Scholar 

  8. Lamari F.N., Karamanos N.K.: Separation methods for sialic acids and critical evaluation of their biologic relevance. J. Chromatogr. B. 781, 3–19 (2002)

    Article  CAS  Google Scholar 

  9. Rehan I.F., Ueda K., Mitani T., Amano M., Hinou H., Ohashi T., Kondo S., Nishimura S.-I.: Large-scale glycomics of livestock: discovery of highly sensitive serum biomarkers indicating an environmental stress affecting immune responses and productivity of Holstein dairy cows. J. Agric. Food Chem. 63, 10578–10590 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Wang B., McVeagh P., Petocz P., Brand-Miller J.: Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr. 78, 1024–1029 (2003)

    CAS  PubMed  Google Scholar 

  11. Wang B.: Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr. 3, 465S–472S (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gulesserian T., Engidawork E., Fountoulakis M., Lubec G.: Manifold decrease of sialic acid synthase in fetal down syndrome brain. Amino Acids. 32, 141–144 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Uslu E, Guzey FK, Oguz E, Guzey D The effects of ageing on brain tissue sialic acid contents following cold trauma. Acta Neurochir. 146:1337–1340 discussion 1340 2004

  14. Wang B., Miller J.B., McNeil Y., McVeagh P.: Sialic acid concentration of brain gangliosides: variation among eight mammalian species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 119, 435–439 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Wang B., Brand-Miller J.: The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 57, 1351–1369 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Wang B., Brand-Miller J., McVeagh P., Petocz P.: Concentration and distribution of sialic acid in human milk and infant formulas. Am J Clin Nutr. 74, 510–515 (2001)

    CAS  PubMed  Google Scholar 

  17. Morgan B.L., Winick M.: Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. J Nutr. 110, 416–424 (1980)

    CAS  PubMed  Google Scholar 

  18. Samraj A.N., Laubli H., Varki N., Varki A.: Involvement of a non-human sialic acid in human cancer. Front Oncol. 4, 33 (2014)

    PubMed  PubMed Central  Google Scholar 

  19. Diaz S.L., Padler-Karavani V., Ghaderi D., Hurtado-Ziola N., Yu H., Chen X., der Linden EC B.-v., Varki A., NM V.: Sensitive and specific detection of the non-human sialic acid N-glycolylneuraminic acid in human tissues and biotherapeutic products. PLoS One. 4, e4241 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nguyen D.H., Tangvoranuntakul P., Varki A.: Effects of natural human antibodies against a nonhuman sialic acid that metabolically incorporates into activated and malignant immune cells. J. Immunol. 175, 228–236 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. der Linden EC B.-v., Sjoberg E.R., Juneja L.R., Crocker P.R., Varki N., Varki A.: Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J Biol Chem. 275, 8633–8640 (2000)

    Article  Google Scholar 

  22. Tangvoranuntakul P., Gagneux P., Diaz S., Bardor M., Varki N., Varki A., Muchmore E.: Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. P Natl Acad Sci USA. 100, 12045–12050 (2003)

    Article  CAS  Google Scholar 

  23. Hedlund M., Padler-Karavani V., Varki N.M., Varki A.: Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. P Natl Acad Sci USA. 105, 18936–18941 (2008)

    Article  CAS  Google Scholar 

  24. Pham T., Gregg C.J., Karp F., Chow R., Padler-Karavani V., Cao H., Chen X., Witztum J.L., Varki N.M., Varki A.: Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood. 114, 5225–5235 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lofling J.C., Paton A.W., Varki N.M., Paton J.C., Varki A.: A dietary non-human sialic acid may facilitate hemolytic-uremic syndrome. Kidney Int. 76, 140–144 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Byres E., Paton A.W., Paton J.C., Lofling J.C., Smith D.F., Wilce M.C., Talbot U.M., Chong D.C., Yu H., Huang S., Chen X., Varki N.M., Varki A., Rossjohn J., Beddoe T.: Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature. 456, 648–652 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Svennerholm L.: Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta. 24, 604–611 (1957)

    Article  CAS  PubMed  Google Scholar 

  28. Warren L.: The thiobarbituric acid assay of sialic acids. J Biol Chem. 234, 1971–1975 (1959)

    CAS  PubMed  Google Scholar 

  29. Hurum D.C., Rohrer J.S.: Determination of sialic acids in infant formula by chromatographic methods: a comparison of high-performance anion-exchange chromatography with pulsed amperometric detection and Ultra-high-performance liquid chromatography methods. J. Dairy Sci. 95, 1152–1161 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. Ito M., Ikeda K., Suzuki Y., Tanaka K., Saito M.: An improved fluorometric high-performance liquid chromatography method for sialic acid determination: an internal standard method and its application to sialic acid analysis of human apolipoprotein E. Anal. Biochem. 300, 260–266 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Huang K., Wang M.M., Kulinich A., Yao H.L., Ma H.Y., Martinez J.E., Duan X.C., Chen H., Cai Z.P., Flitsch S.L., Liu L., Voglmeir J.: Biochemical characterisation of the neuraminidase pool of the human gut symbiont akkermansia muciniphila. Carbohydr. Res. 415, 60–65 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Knorst M., Fessner W.D.: CMP-sialate synthetase from Neisseria meningitidis - overexpression and application to the synthesis of oligosaccharides containing modified sialic acids. Adv. Synth. Catal. 343, 698–710 (2001)

    Article  CAS  Google Scholar 

  33. Martinez J.E.R., Sardzik R., Voglmeir J., Flitsch S.L.: Enzymatic synthesis of colorimetric substrates to determine alpha-2,3-and alpha-2,6-specific neuraminidase activity. RSC Adv. 3, 21335–21338 (2013)

    Article  Google Scholar 

  34. Lapidot Y., Rappoport S., Wolman Y.: Use of esters of N-hydroxysuccinimide in the synthesis of N-acylamino acids. J. Lipid Res. 8, 142–145 (1967)

    CAS  PubMed  Google Scholar 

  35. Anumula K.R.: Rapid quantitative determination of sialic acids in glycoproteins by high-performance liquid chromatography with a sensitive fluorescence detection. Anal. Biochem. 230, 24–30 (1995)

    Article  CAS  PubMed  Google Scholar 

  36. Terada T, Kitazume S, Kitajima K, Inoue S, Ito F, Troy FA, Inoue Y Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP:CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase. Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP:CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase 268:2640–8 1993

  37. Spichtig V., Michaud J., Austin S.: Determination of sialic acids in milks and milk-based products. Anal. Biochem. 405, 28–40 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. Muthing J., Maurer U., Sostaric K., Neumann U., Brandt H., Duvar S., Peter-Katalinic J., Weber-Schurholz S.: Different distributions of glycosphingolipids in mouse and rabbit skeletal muscle demonstrated by biochemical and immunohistological analyses. J. Biochem. 115, 248–256 (1994)

    CAS  PubMed  Google Scholar 

  39. Nakamura K., Ariga T., Yahagi T., Miyatake T., Suzuki A., Yamakawa T.: Interspecies comparison of muscle gangliosides by two-dimensional thin-layer chromatography. J. Biochem. 94, 1359–1365 (1983)

    CAS  PubMed  Google Scholar 

  40. Müthing J., Maurer U., Šoštarié K., Neumann U., Brandt H., Duvar S., Peter-Katalinié J., Weber-Schurholz S.: Different distributions of glycosphingolipids in mouse and rabbit skeletal muscle demonstrated by biochemical and immunohistological analyses. J. Biochem. 115, 248–256 (1994)

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Akemi Suzuki (Hiratsuka, Japan) for helpful discussions on sialic acids.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Liu or Josef Voglmeir.

Ethics declarations

Source of funding

This work was supported in parts by the Natural Science Foundation of China (grant number 31,471,703 to L.L. and J.V., A0201300537 to J.V. and L.L.), Natural Science Foundation of the Jiangsu Province Higher Education Institutions (grant number 13KJD230002 to L.H.Y.), and the 100 Foreign Talents Plan (grant number JSB2014012 to J.V.).

Electronic supplementary material

ESM 1

(PDF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H.L., Conway, L.P., Wang, M.M. et al. Quantification of sialic acids in red meat by UPLC-FLD using indoxylsialosides as internal standards. Glycoconj J 33, 219–226 (2016). https://doi.org/10.1007/s10719-016-9659-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9659-1

Keywords

Navigation