Skip to main content
Log in

Additional N-glycosylation in the N-terminal region of recombinant human alpha-1 antitrypsin enhances the circulatory half-life in Sprague-Dawley rats

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosylation affects the circulatory half-lives of therapeutic proteins. However, the effects of an additional N-glycosylation in the unstructured region or the loop region of alpha-1 antitrypsin (A1AT) on the circulatory half-life of the protein are largely unknown. In this study, we investigated the role of an additional N-glycosylation site (Q4N/D6T, Q9N, D12N/S14T, A70N, G148T, R178N, or V212N) to the three naturally occurring N-glycosylation sites in human A1AT. A single-dose (445 μg/kg) pharmacokinetic study using male Sprague-Dawley rats showed that, among the seven recombinant A1AT (rA1AT) mutants, Q9N and D12N/S14T showed the highest serum concentration and area under the curve values, as well as similar circulatory half-lives that were 2.2-fold higher than plasma-derived A1AT and 1.7-fold higher than wild-type rA1AT. We further characterized the Q9N mutant regarding the N-glycan profile, sialic acid content, protease inhibitory activity, and protein stability. The results indicate that an additional N-glycosylation in the flexible N-terminal region increases the circulatory half-life of rA1AT without altering its protease inhibitory activity. Our study provides novel insight into the use of rA1AT for the treatment of emphysema with an increased injection interval relative to the clinically used plasma-derived A1AT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A1AT:

Alpha-1 antitrypsin

nA1AT:

Plasma-derived native A1AT

rA1AT:

Recombinant A1AT

Neu5Ac:

N-acetylneuraminic acid

Neu5Gc:

N-glycolylneuramic acid

References

  1. Travis J.: Structure, function, and control of neutrophil proteinases. Am. J. Med. 84(6 A), 37–42 (1988)

    Article  PubMed  Google Scholar 

  2. Crystal, R.G.: Alpha 1-antitrypsin deficiency: pathogenesis and treatment. Hosp. Pract. (Off Ed) 26(2), 81–84, 88–89, 93–84 (1991)

  3. Petrache I., Hajjar J., Campos M.: Safety and efficacy of alpha-1-antitrypsin augmentation therapy in the treatment of patients with alpha-1-antitrypsin deficiency. Biologics. 3, 193–204 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurachi K., Chandra T., Degen S.J., White T.T., Marchioro T.L., Woo S.L., Davie E.W.: Cloning and sequence of cDNA coding for alpha 1-antitrypsin. Proc. Natl. Acad. Sci. U. S. A. 78(11), 6826–6830 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wewers M.D., Crystal R.G.: Alpha-1 antitrypsin augmentation therapy. COPD. 10(Suppl 1), 64–67 (2013)

    Article  PubMed  Google Scholar 

  6. Johansen H., Sutiphong J., Sathe G., Jacobs P., Cravador A., Bollen A., Rosenberg M., Shatzman A.: High-level production of fully active human alpha 1-antitrypsin in Escherichia coli. Mol. Biol. Med. 4(5), 291–305 (1987)

    CAS  PubMed  Google Scholar 

  7. Arjmand S., Bidram E., Lotfi A.S., Shamsara M., Mowla S.J.: Expression and purification of functionally active recombinant human alpha 1-antitrypsin in methylotrophic yeast pichia pastoris. Avicenna J. Med. Biotechnol. 3(3), 127–134 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwon K.S., Song M., Yu M.H.: Purification and characterization of alpha 1-antitrypsin secreted by recombinant yeast saccharomyces diastaticus. J. Biotechnol. 42(3), 191–195 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. Curtis H., Sandoval C., Oblin C., Difalco M.R., Congote L.F.: Insect cell production of a secreted form of human alpha(1)-proteinase inhibitor as a bifunctional protein which inhibits neutrophil elastase and has growth factor-like activities. J. Biotechnol. 93(1), 35–44 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Paterson T., Innes J., Moore S.: Approaches to maximizing stable expression of alpha 1-antitrypsin in transformed CHO cells. Appl. Microbiol. Biotechnol. 40(5), 691–698 (1994)

    Article  CAS  PubMed  Google Scholar 

  11. Lee K.J., Lee S.M., Gil J.Y., Kwon O., Kim J.Y., Park S.J., Chung H.S., Oh D.B.: N-glycan analysis of human alpha1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj. J. 30(5), 537–547 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Blanchard V., Liu X., Eigel S., Kaup M., Rieck S., Janciauskiene S., Sandig V., Marx U., Walden P., Tauber R., Berger M.: N-glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line. Biotechnol. Bioeng. 108(9), 2118–2128 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. Carver A., Wright G., Cottom D., Cooper J., Dalrymple M., Temperley S., Udell M., Reeves D., Percy J., Scott A., et al.: Expression of human alpha 1 antitrypsin in transgenic sheep. Cytotechnology. 9(1–3), 77–84 (1992)

  14. Castilho A., Windwarder M., Gattinger P., Mach L., Strasser R., Altmann F., Steinkellner H.: Proteolytic and N-glycan processing of human alpha1-antitrypsin expressed in nicotiana benthamiana. Plant Physiol. 166(4), 1839–1851 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim J.Y., Kim Y.G., Lee G.M.: CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 93(3), 917–930 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Kolarich D., Weber A., Turecek P.L., Schwarz H.P., Altmann F.: Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics. 6(11), 3369–3380 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Hodges L.C., Laine R., Chan S.K.: Structure of the oligosaccharide chains in human alpha 1-protease inhibitor. J. Biol. Chem. 254(17), 8208–8212 (1979)

    CAS  PubMed  Google Scholar 

  18. Lindhout T., Iqbal U., Willis L.M., Reid A.N., Li J., Liu X., Moreno M., Wakarchuk W.W.: Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Proc. Natl. Acad. Sci. U. S. A. 108(18), 7397–7402 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lusch A., Kaup M., Marx U., Tauber R., Blanchard V., Berger M.: Development and analysis of alpha 1-antitrypsin neoglycoproteins: the impact of additional N-glycosylation sites on serum half-life. Mol. Pharm. 10(7), 2616–2629 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. Sola R.J., Griebenow K.: Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs. 24(1), 9–21 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clerc F., Reiding K.R., Jansen B.C., Kammeijer G.S., Bondt A., Wuhrer M.: Human plasma protein N-glycosylation. Glycoconj. J (2015). doi:10.1007/s10719-10015-19626-10712

  22. Shental-Bechor D., Levy Y.: Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr. Opin. Struct. Biol. 19(5), 524–533 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Egrie J.C., Dwyer E., Browne J.K., Hitz A., Lykos M.A.: Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 31(4), 290–299 (2003)

  24. Kaup M., Saul V.V., Lusch A., Dorsing J., Blanchard V., Tauber R., Berger M.: Construction and analysis of a novel peptide tag containing an unnatural N-glycosylation site. FEBS Lett. 585(14), 2372–2376 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Vansteenkiste, J., Pirker, R., Massuti, B., Barata, F., Font, A., Fiegl, M., Siena, S., Gateley, J., Tomita, D., Colowick, A.B., Musil, J., Aranesp 980297 Study, G.: Double-blind, placebo-controlled, randomized phase III trial of darbepoetin alfa in lung cancer patients receiving chemotherapy. J. Natl. Cancer Inst.. 94(16), 1211–1220 (2002)

  26. Kim S., Woo J., Seo E.J., Yu M., Ryu S.: A 2.1 A resolution structure of an uncleaved alpha(1)-antitrypsin shows variability of the reactive center and other loops. J. Mol. Biol. 306(1), 109–119 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Patschull A.O., Segu L., Nyon M.P., Lomas D.A., Nobeli I., Barrett T.E., Gooptu B.: Therapeutic target-site variability in alpha1-antitrypsin characterized at high resolution. Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun. 67(Pt 12), 1492–1497 (2011)

    Article  CAS  Google Scholar 

  28. Roepstorff P., Fohlman J.: Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11(11), 601 (1984)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Jae Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, HS., Kim, JS., Lee, S.M. et al. Additional N-glycosylation in the N-terminal region of recombinant human alpha-1 antitrypsin enhances the circulatory half-life in Sprague-Dawley rats. Glycoconj J 33, 201–208 (2016). https://doi.org/10.1007/s10719-016-9657-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9657-3

Keywords

Navigation