Glycoconjugate Journal

, Volume 32, Issue 9, pp 729–734 | Cite as

Preparation of legionaminic acid analogs of sialo-glycoconjugates by means of mammalian sialyltransferases

  • David C. Watson
  • Warren W. Wakarchuk
  • Christian Gervais
  • Yves Durocher
  • Anna Robotham
  • Steve M. Fernandes
  • Ronald L. Schnaar
  • N. Martin Young
  • Michel Gilbert
Original Article


Legionaminic acids are analogs of sialic acid that occur in several bacteria. The most commonly occurring form is Leg5Ac7Ac, which differs from Neu5Ac only at the C7 (acetamido) and C9 (deoxy) positions. While these differences greatly reduce the susceptibility of Leg compounds to sialidases, several sialyltransferases have been identified that can use CMP-Leg5Ac7Ac as a donor (Watson et al. 2011). We report the successful modification with Leg5Ac7Ac of a glycolipid, GM1a, and two glycoproteins, interferon-α2b and α1-antitrypsin, by means of two mammalian sialyltransferases, namely porcine ST3Gal1 and human ST6Gal1. The Leg5Ac7Ac form of GD1a was not recognized by the myelin-associated glycoprotein (MAG, Siglec-4), confirming the importance of the glycerol moiety in the interaction of sialo-glycans with Siglecs.


α1-antitrypsin GD1a Human ST6Gal1 sialyltransferase Interferon-α2b Porcine ST3Gal1 sialyltransferase 



6-(fluorescein-5-carboxyamido)-hexanoic acid succinimidyl ester derivative of the p-aminophenyl glycoside





We thank Dr Jianjun Li, Jack Stupak and Dr John Kelly for the mass spectrometric analyses and Denis Brochu for help with the preparation of the figures.


  1. 1.
    Watson, D.C., Leclerc, S., Wakarchuk, W.W., Young, N.M.: Enzymatic synthesis and properties of glycoconjugates with legionaminic acid as a replacement for neuraminic acid. Glycobiology 21, 99–108 (2011)CrossRefPubMedGoogle Scholar
  2. 2.
    Watson, D.C., Wakarchuk, W.W., Leclerc, S., Schur, M.J., Schoenhofen, I.C., Young, N.M., Gilbert, M.: Sialyltransferases with enhanced legionaminic acid transferase activity for the preparation of analogs of sialoglycoconjugates. Glycobiology 25, 767–773 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    Collins, B.E., Kiso, M., Hasegawa, A., Tropak, M.B., Roder, K.C., Crocker, P.R., Schnaar, R.L.: Binding specificities of the sialoadhesin family of I-type lectins. Sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein and sialoadhesin. J. Biol. Chem. 272, 16889–16895 (1997)CrossRefPubMedGoogle Scholar
  4. 4.
    Yang, L.J.S., Zeller, C.B., Shaper, N.L., Kiso, M., Hasegawa, A., Shapiro, R.E., Schnaar, R.L.: Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl. Acad. Sci. U. S. A. 93, 814–818 (1996)PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Adolf, G.R., Kalsner, I., Ahorn, H., Maurer-Fogy, I., Cantell, K.: Natural human interferon-α2 is O-glycosylated. Biochem. J. 276, 511–518 (1991)PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Kolarich, D., Weber, A., Turecek, P.L., Schwarz, H.-P., Altmann, F.: Comprehensive glyco-proteomic analysis of human α1-antitrypsin and its charge isoforms. Proteomics 6, 3369–3380 (2006)CrossRefPubMedGoogle Scholar
  7. 7.
    Lee, K.J., Lee, S.M., Gil, J.Y., Kwon, O., Kim, J.Y., Park, S.J., Chung, H.-S., Oh, D.-B.: N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj. J. 30, 537–547 (2013)CrossRefPubMedGoogle Scholar
  8. 8.
    McCarthy, C., Saldova, R., Wormald, M.R., Rudd, P.M., McElvaney, N.G., Reeves, E.P.: The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J. Proteome Res. 13, 3131–3143 (2014)CrossRefPubMedGoogle Scholar
  9. 9.
    Ghasriani, H., Belcourt, P.J.F., Sauvé, S., Hodgson, D.J., Brochu, D., Gilbert, M., Aubin, Y.: A single N-acetylgalactosamine residue at threonine 106 modifies the dynamics and structure of interferon α2a around the glycosylation site. J. Biol. Chem. 288, 247–254 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Lindhout, T., Iqbal, U., Willis, L.M., Reid, A.N., Li, J., Liu, X., Moreno, M., Wakarchuk, W.W.: Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Proc. Natl. Acad. Sci. U. S. A. 108, 7397–7402 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Loignon, M., Perret, S., Kelly, J., Boulais, D., Cass, B., Bisson, L., Afkhamizarreh, F., Durocher, Y.: Stable high volumetric production of glycosylated human recombinant IFNalpha2b in HEK293 cells. BMC Biotechnol. 8, 65 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Shi, C., Shin, Y.O., Hanson, J., Cass, B., Loewen, M.C., Durocher, Y.: Purification and characterization of a recombinant G-protein-coupled receptor, Saccharomyces cerevisiae Ste2p, transiently expressed in HEK293 EBNA1 cells. Biochemistry 44, 15705–15714 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, J., Liu, X., Bell, A., To, R., Baral, T.N., Azizi, A., Li, J., Cass, B., Durocher, Y.: Transient expression and purification of chimeric heavy chain antibodies. Prot. Expr. Purif. 65, 77–82 (2009)CrossRefGoogle Scholar
  14. 14.
    Dorion-Thibaudeau, J., Raymond, C., Lattová, E., Perreault, H., Durocher, Y., De Crescenzo, G.: Towards the development of a surface plasmon resonance assay to evaluate the glycosylation pattern of monoclonal antibodies using the extracellular domains of CD16a and CD64. J. Immunol. Methods 408, 24–34 (2014)CrossRefPubMedGoogle Scholar
  15. 15.
    Raymond, C., Robotham, A., Spearman, M., Butler, M., Kelly, J., Durocher, Y.: Production of α2,6-sialylated IgG1 in CHO cells. MAbs 7, 571–583 (2015)CrossRefPubMedGoogle Scholar
  16. 16.
    Lopez, P.H.H., Schnaar, R.L.: Determination of glycolipid-protein interaction specificity. Methods Enzymol. 417, 205–220 (2006)PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    May, A.P., Robinson, R.C., Vinson, M., Crocker, P.R., Jones, E.Y.: Crystal structure of the N-terminal domain of sialoadhesin in complex with 3′ sialyllactose at 1.85 Å resolution. Mol. Cell 1, 719–728 (1998)Google Scholar
  18. 18.
    Alphey, M.S., Attrill, H., Crocker, P.R., van Aalten, D.M.F.: High resolution crystal structures of Siglec-7. Insights into ligand specificity in the Siglec family. J. Biol. Chem. 278, 3372–3377 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    Mahanta, S.K., Sastry, M.V., Surolia, A.: Topography of the combining region of a Thomsen-Friedenreich-antigen-specific lectin jacalin (Artocarpus integrifolia agglutinin): A thermodynamic and circular-dichroism spectroscopic study. Biochem. J. 265, 831–840 (1990)PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Washburn, N., Schwab, I., Ortiz, D., Bhatnager, N., Lansing, J.C., Medeiros, A., Tyler, S., Mekala, D., Cochran, E., Sarvaiya, H., Garofalo, K., Meccariello, R., Meador III, J.W., Rutitzky, L., Schultes, B.C., Ling, L., Avery, W., Nimmerjahn, F., Manning, A.M., Kaundinya, G.V., Bosques, C.J.: Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc. Natl. Acad. Sci. U. S. A. 112, E1297–E1306 (2015)PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Matthies, S., Stallforth, P., Seeberger, P.H.: Total synthesis of legionaminic acid as basis for serological studies. J. Am. Chem. Soc. 137, 2848–2851 (2015)CrossRefPubMedGoogle Scholar
  22. 22.
    McNally, D.J., Aubry, A.J., Hui, J.P., Khieu, N.H., Whitfield, D., Ewing, C.P., Guerry, P., Brisson, J.R., Logan, S.M., Soo, E.C.: Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagella glycans. J. Biol. Chem. 282, 14463–14475 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada as represented by: NRC Canada 2015

Authors and Affiliations

  • David C. Watson
    • 1
  • Warren W. Wakarchuk
    • 2
  • Christian Gervais
    • 3
  • Yves Durocher
    • 3
  • Anna Robotham
    • 1
  • Steve M. Fernandes
    • 4
  • Ronald L. Schnaar
    • 4
  • N. Martin Young
    • 1
  • Michel Gilbert
    • 1
  1. 1.Human Health TherapeuticsNational Research Council CanadaOttawaCanada
  2. 2.Department of Chemistry and BiologyRyerson UniversityTorontoCanada
  3. 3.Human Health TherapeuticsNational Research Council CanadaMontrealCanada
  4. 4.Department of PharmacologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations