Skip to main content

Advertisement

Log in

Serglycin protects against high fat diet-induced increase in serum LDL in mice

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Proteoglycans have been implicated in regulation of lipoprotein metabolism. However, the impact of serglycin, the major proteoglycan expressed by many hematopoietic- and endothelial cells, on lipoprotein metabolism has not been explored. Here we addressed this issue by comparing several parameters of lipid metabolism in wild type (WT) and serglycin−/− mice, both at baseline and after feeding mice the Paigen diet. We show that, after feeding this diet for 20 weeks, serglycin deficient mice exhibited elevated concentrations of serum LDL in comparison with WT mice, thus suggesting that serglycin protects against an elevation of serum LDL levels after intake of a high-fat diet. Body weight increased in both groups, but only significantly in the serglycin−/− group. To explore the mechanism underlying this phenotype, genome-wide expression analysis was performed on liver tissues from WT and serglycin−/− mice. This analysis showed that serglycin-deficiency is associated with differential expression of numerous genes involved in the regulation of lipid metabolism, suggesting that the impact of serglycin on LDL levels may be related to effects at the gene expression level. In particular, several members of the CYP gene family were differently regulated in serglycin−/− compared with WT mice. Moreover, upstream regulator analysis suggested that several pro-inflammatory pathways, including the NFκB pathway, could contribute to the impact of serglycin on LDL. Hence, the elevation of serum LDL seen in serglycin−/− mice may be linked to dysregulated inflammatory responses. Taken together, our findings introduce serglycin as a novel player in processes that regulate lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Couchman, J.R., Pataki, C.A.: An introduction to proteoglycans and their localization. J. Histochem. Cytochem. Off. J. Histochem. Soc. 60(12), 885–897 (2012)

    Article  Google Scholar 

  2. Esko, J.D., Kimata, K., Lindahl, U.: Proteoglycans and sulfated glycosaminoglycans. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)

    Google Scholar 

  3. Gandhi, N.S., Mancera, R.L.: The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des. 72(6), 455–482 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Williams, K.J., Tabas, I.: The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15(5), 551–561 (1995)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fogelstrand, P., Boren, J.: Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr. Metab. Cardiovasc. Dis. NMCD 22(1), 1–7 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. Camejo, G., Hurt-Camejo, E., Wiklund, O., Bondjers, G.: Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139(2), 205–222 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Skalen, K., Gustafsson, M., Rydberg, E.K., Hulten, L.M., Wiklund, O., Innerarity, T.L., Boren, J.: Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890), 750–754 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Evanko, S.P., Raines, E.W., Ross, R., Gold, L.I., Wight, T.N.: Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am. J. Pathol. 152(2), 533 (1998)

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Raines, E.W.: The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int. J. Exp. Pathol. 81(3), 173–182 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pillarisetti, S., Paka, L., Obunike, J.C., Berglund, L., Goldberg, I.J.: Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix. J. Clin. Invest. 100(4), 867–874 (1997)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kunjathoor, V.V., Chiu, D.S., O’Brien, K.D., LeBoeuf, R.C.: Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 22(3), 462–468 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Thompson, J.C., Tang, T., Wilson, P.G., Yoder, M.H., Tannock, L.R.: Increased atherosclerosis in mice with increased vascular biglycan content. Atherosclerosis 235(1), 71–75 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gustafsson, M., Levin, M., Skålén, K., Perman, J., Fridén, V., Jirholt, P., Olofsson, S.-O., Fazio, S., Linton, M.F., Semenkovich, C.F., et al.: Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase. Circ. Res. 101(8), 777–783 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. MacArthur, J.M., Bishop, J.R., Stanford, K.I., Wang, L., Bensadoun, A., Witztum, J.L., Esko, J.D.: Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest. 117(1), 153–164 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Stanford, K.I., Bishop, J.R., Foley, E.M., Gonzales, J.C., Niesman, I.R., Witztum, J.L., Esko, J.D.: Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Invest. 119(11), 3236–3245 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Foley, E.M., Gordts, P.L., Stanford, K.I., Gonzales, J.C., Lawrence, R., Stoddard, N., Esko, J.D.: Hepatic remnant lipoprotein clearance by heparan sulfate proteoglycans and low-density lipoprotein receptors depend on dietary conditions in mice. Arterioscler. Thromb. Vasc. Biol. 33(9), 2065–2074 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Dallinga-Thie, G.M., Franssen, R., Mooij, H.L., Visser, M.E., Hassing, H.C., Peelman, F., Kastelein, J.J.P., Péterfy, M., Nieuwdorp, M.: The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 211(1), 1–8 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kulseth, M.A., Kolset, S.O., Ranheim, T.: Stimulation of serglycin and CD44 mRNA expression in endothelial cells exposed to TNF-α and IL-1α. Biochim. Biophys. Acta Gen. Subj. 1428(2–3), 225–232 (1999)

    Article  CAS  Google Scholar 

  19. Zernichow, L., Abrink, M., Hallgren, J., Grujic, M., Pejler, G., Kolset, S.O.: Serglycin is the major secreted proteoglycan in macrophages and has a role in the regulation of macrophage tumor necrosis factor-alpha secretion in response to lipopolysaccharide. J. Biol. Chem. 281(37), 26792–26801 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Lemire, J.M., Chan, C.K., Bressler, S., Miller, J., LeBaron, R.G., Wight, T.N.: Interleukin-1β selectively decreases the synthesis of versican by arterial smooth muscle cells. J. Cell. Biochem. 101(3), 753–766 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Paigen, B., Morrow, A., Brandon, C., Mitchell, D., Holmes, P.: Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57(1), 65–73 (1985)

    Article  CAS  PubMed  Google Scholar 

  22. Abrink, M., Grujic, M., Pejler, G.: Serglycin is essential for maturation of mast cell secretory granule. J. Biol. Chem. 279(39), 40897–40905 (2004)

    Article  PubMed  Google Scholar 

  23. Košir, R., Zmrzljak, U.P., Bele, T., Acimovic, J., Perse, M., Majdic, G., Prehn, C., Adamski, J., Rozman, D.: Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland–involvement of cAMP‐responsive element modulator in epigenetic regulation of Cyp17a1. FEBS J. 279(9), 1584–1593 (2011)

    PubMed  Google Scholar 

  24. Dalla Valle, L., Toffolo, V., Vianello, S., Belvedere, P., Colombo, L.: Expression of cytochrome P450c17 and other steroid-converting enzymes in the rat kidney throughout the life-span. J. Steroid Biochem. Mol. Biol. 91(1–2), 49–58 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif) 25(4), 402–408 (2001)

    Article  CAS  Google Scholar 

  26. Schmittgen, T.D., Livak, K.J.: Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3(6), 1101–1108 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Xie, C., Woollett, L.A., Turley, S.D., Dietschy, J.M.: Fatty acids differentially regulate hepatic cholesteryl ester formation and incorporation into lipoproteins in the liver of the mouse. J. Lipid Res. 43(9), 1508–1519 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Greco, T.L., Payne, A.H.: Ontogeny of expression of the genes for steroidogenic enzymes P450 side-chain cleavage, 3 beta-hydroxysteroid dehydrogenase, P450 17 alpha-hydroxylase/C17-20 lyase, and P450 aromatase in fetal mouse gonads. Endocrinology 135(1), 262–268 (1994)

    CAS  PubMed  Google Scholar 

  29. Zhang, P., Compagnone, N.A., Fiore, C., Vigne, J.L., Culp, P., Musci, T.J., Mellon, S.H.: Developmental gonadal expression of the transcription factor SET and its target gene, P450c17 (17alpha-hydroxylase/c17,20 lyase). DNA Cell Biol. 20(10), 613–624 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Nelson, D.R., Zeldin, D.C., Hoffman, S.M., Maltais, L.J., Wain, H.M., Nebert, D.W.: Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14(1), 1–18 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Martignoni, M., Groothuis, G.M., de Kanter, R.: Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin. Drug Metab. Toxicol. 2(6), 875–894 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Krämer, A., Green. J., Pollard, J., Tugendreich, S.: Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. (2013)

  33. Gu, S., Ripp, S.L., Prough, R.A., Geoghegan, T.E.: Dehydroepiandrosterone affects the expression of multiple genes in rat liver including 11 beta-hydroxysteroid dehydrogenase type 1: a cDNA array analysis. Mol. Pharmacol. 63(3), 722–731 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. EnayetAllah, A.E., Luria, A., Luo, B., Tsai, H.-J., Sura, P., Hammock, B.D., Grant, D.F.: Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J. Biol. Chem. 283(52), 36592–36598 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zhang, L.-N., Vincelette, J., Cheng, Y., Mehra, U., Chen, D., Anandan, S.-K., Gless, R., Webb, H.K., Wang, Y.-X.: Inhibition of soluble epoxide hydrolase attenuated atherosclerosis, abdominal aortic aneurysm formation, and dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 29(9), 1265–1270 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Janssen, A.W., Kersten. S.: The role of the gut microbiota in metabolic health. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. (2015)

  37. Kolset, S.O., Pejler, G.: Serglycin: a structural and functional chameleon with wide impact on immune cells. J. Immunol. (Baltimore, Md : 1950) 187(10), 4927–4933 (2011)

    Article  CAS  Google Scholar 

  38. Wernersson, S., Braga, T., Sawesi, O., Waern, I., Nilsson, K.E., Pejler, G., Abrink, M.: Age-related enlargement of lymphoid tissue and altered leukocyte composition in serglycin-deficient mice. J. Leukoc. Biol. 85(3), 401–408 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. Gregor, M.F., Hotamisligil, G.S.: Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Badimon, L., Vilahur, G.: LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos. Ann. N. Y. Acad. Sci. 1254(1), 18–32 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. Hansson, G.K., Hermansson, A.: The immune system in atherosclerosis. Nat. Immunol. 12(3), 204–212 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. Westerterp, M., Bochem, A.E., Yvan-Charvet, L., Murphy, A.J., Wang, N., Tall, A.R.: ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 114(1), 157–170 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. Memon, R.A., Grunfeld, C., Moser, A.H., Feingold, K.R.: Tumor necrosis factor mediates the effects of endotoxin on cholesterol and triglyceride metabolism in mice. Endocrinology 132(5), 2246–2253 (1993)

    CAS  PubMed  Google Scholar 

  44. Feingold, K.R., Pollock, A.S., Moser, A.H., Shigenaga, J.K., Grunfeld, C.: Discordant regulation of proteins of cholesterol metabolism during the acute phase response. J. Lipid Res. 36(7), 1474–1482 (1995)

    CAS  PubMed  Google Scholar 

  45. Esteve, E., Ricart, W., Fernández-Real, J.M.: Dyslipidemia and inflammation: an evolutionary conserved mechanism. Clin. Nutr. 24(1), 16–31 (2005)

    Article  CAS  PubMed  Google Scholar 

  46. Khovidhunkit, W., Kim, M.-S., Memon, R.A., Shigenaga, J.K., Moser, A.H., Feingold, K.R., Grunfeld, C.: Thematic review series: the pathogenesis of atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. J. Lipid Res. 45(7), 1169–1196 (2004)

    Article  CAS  PubMed  Google Scholar 

  47. Kitagawa, S., Yamaguchi, Y., Imaizumi, N., Kunitomo, M., Fujiwara, M.: A uniform alteration in serum lipid metabolism occurring during inflammation in mice. Jpn. J. Pharmacol. 58(1), 37–46 (1992)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Institute of Basic Medical Sciences, University of Oslo, The Throne Holst Foundation, Freia Medical Research Fund, The Norwegian Diabetes Association, Anders Jahres Fund and The Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astri J. Meen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 350 kb)

ESM 2

(PDF 648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meen, A.J., Drevon, C.A., Pejler, G. et al. Serglycin protects against high fat diet-induced increase in serum LDL in mice. Glycoconj J 32, 703–714 (2015). https://doi.org/10.1007/s10719-015-9621-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9621-7

Keywords

Navigation