Skip to main content

Advertisement

Log in

Fluorescently labelled glycans and their applications

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

This review summarises the literature on the synthesis and applications of fluorescently labelled carbohydrates. Due to the sensitivity of fluorescent detection, this approach provides a useful tool to study processes involving glycans. A few general categories of labelling are presented, in situ labelling of carbohydrates with fluorophores, fluorescently labelled glycolipids, fluorogenic glycans, pre-formed fluorescent glycans for intracellular applications, glycan-decorated fluorescent polymers, fluorescent glyconanoparticles, and other functional fluorescent glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Scheme 4
Scheme 5
Scheme 6
Fig. 4
Fig. 5
Scheme 7
Fig. 6
Fig. 7
Scheme 8

Similar content being viewed by others

References

  1. Cao, H.S., Heagy, M.D.: Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review. J. Fluoresc. 14, 569–584 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Mader, H.S., Wolfbeis, O.S.: Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim. Acta 162, 1–34 (2008)

    Article  CAS  Google Scholar 

  3. Sinkeldam, R.W., Greco, N.J., Tor, Y.: Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem. Rev. 110, 2579–2619 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wang, W., Gao, X.M., Wang, B.H.: Boronic acid-based sensors. Curr. Org. Chem. 6, 1285–1317 (2002)

    Article  CAS  Google Scholar 

  5. Yoon, J., Czarnik, A.W.: Fluorescent chemosensors of carbohydrates - a means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J. Am. Chem. Soc. 114, 5874–5875 (1992)

    Article  CAS  Google Scholar 

  6. DiCesare, N., Lakowicz, J.R.: Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescence probes for saccharides. J. Phys. Chem. A 105, 6834–6840 (2001)

    Article  CAS  Google Scholar 

  7. Weber, P., Harrison, F.W., Hof, L.: Histochemical application of dansylhydrazine as a fluorescent labeling reagent for sialic-acid in cellular glycoconjugates. Histochemistry 45, 271–277 (1975)

    Article  CAS  PubMed  Google Scholar 

  8. Weber, P., Hof, L.: Introduction of a fluorescent label into carbohydrate moiety of glycoconjugates. Biochem. Biophys. Res. Commun. 65, 1298–1302 (1975)

    Article  CAS  PubMed  Google Scholar 

  9. Ingham, K.C., Brew, S.A.: Fluorescent labeling of the carbohydrate moieties of human chorionic-gonadotropin and α-1-acid glycoprotein. Biochim. Biophys. Acta 670, 181–189 (1981)

    Article  CAS  PubMed  Google Scholar 

  10. Mechref, Y., Ostrander, G.K., El Rassi, Z.: Capillary electrophoresis of carboxylated carbohydrates.1. Selective precolumn derivatization of gangliosides with UV absorbing and fluorescent tags. J. Chromatogr. A 695, 83–95 (1995)

    Article  CAS  PubMed  Google Scholar 

  11. Anumula, K.R., Du, P.: Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins. Anal. Biochem. 275, 236–242 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Coles, E., Reinhold, V.N., Carr, S.A.: Fluorescent labeling of carbohydrates and analysis by liquid-chromatography - comparison of derivatives using mannosidosis oligosaccharides. Carbohydr. Res. 139, 1–11 (1985)

    Article  CAS  PubMed  Google Scholar 

  13. Her, G.R., Santikarn, S., Reinhold, V.N., Williams, J.C.: Simplified approach to HPLC precolumn fluorescent labeling of carbohydrates - N-(2-pyridinyl)-glycosylamines. J. Carbohydr. Chem. 6, 129–139 (1987)

    Article  CAS  Google Scholar 

  14. Abraham, G., Low, P.S.: Covalent labeling of specific membrane carbohydrate residues with fluorescent-probes. Biochim. Biophys. Acta 597, 285–291 (1980)

    Article  CAS  PubMed  Google Scholar 

  15. Trabbic, K.R., De Silva, R.A., Andreana, P.R.: Elucidating structural features of an entirely carbohydrate cancer vaccine construct employing circular dichroism and fluorescent labeling. MedChemComm 5, 1143–1149 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Momose, T., Ohkura, Y.: Organic analysis. X. Reaction mechanism of 5-hydroxytetralone with glucose. Chem. Pharm. Bull. 6, 412–415 (1958)

    Article  CAS  PubMed  Google Scholar 

  17. Towne, J.C., Spikner, J.E.: Fluorometric microdetermination of carbohydrates. Anal. Chem. 35, 211–214 (1963)

    Article  CAS  Google Scholar 

  18. Bounias, M.: N-(1-Naphthyl)ethylenediamine dihydrochloride as a new reagent for nanomole quantification of sugars on thin-layer plates by a mathematical calibration process. Anal. Biochem. 106, 291–295 (1980)

    Article  CAS  PubMed  Google Scholar 

  19. Honda, S., Kakimoto, K., Sudo, K., Kakehi, K., Takiura, K.: Fluorimetric determination of reducing sugars with ethylenediamine sulfate. Anal. Chim. Acta 70, 133–139 (1974)

    Article  CAS  Google Scholar 

  20. Honda, S., Matsuda, Y., Terao, M., Kakehi, K.: Fluorimetric determination of reducing carbohydrates with malonamide. Anal. Chim. Acta 108, 421–423 (1979)

    Article  CAS  Google Scholar 

  21. Kato, T., Kinoshita, T.: Fluorometric analysis of biological-materials. 1. Fluorophotometric determination of carbohydrates using taurine and borate. Chem. Pharm. Bull. 26, 1291–1294 (1978)

    Article  CAS  Google Scholar 

  22. Kato, T., Kinoshita, T.: Fluorometric analysis of biological-materials. 2. Fluorometric detection and determination of carbohydrates by high-performance liquid-chromatography using ethanolamine. Anal. Biochem. 106, 238–243 (1980)

    Article  CAS  PubMed  Google Scholar 

  23. Honda, S., Matsuda, Y., Takahashi, M., Kakehi, K., Ganno, S.: Fluorimetric determination of reducing carbohydrates with 2-cyanoacetamide and application to automated-analysis of carbohydrates as borate complexes. Anal. Chem. 52, 1079–1082 (1980)

    Article  CAS  Google Scholar 

  24. Kai, M., Tamura, K., Yamaguchi, M., Ohkura, Y.: Aromatic amidines as fluorogenic reagents, for reducing carbohydrates. Anal. Sci. 1, 59–63 (1985)

    Article  CAS  Google Scholar 

  25. Hammond, K.S., Papermaster, D.S.: Fluorometric assay of sialic-acid in picomole range - modification of thiobarbituric acid assay. Anal. Biochem. 74, 292–297 (1976)

    Article  CAS  PubMed  Google Scholar 

  26. Matsuno, K., Suzuki, S.: Simple fluorimetric method for quantification of sialic acids in glycoproteins. Anal. Biochem. 375, 53–59 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Cai, Z.P., Hagan, A.K., Wang, M.M., Flitsch, S.L., Liu, L., Voglmeir, J.: 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates. Anal. Chem. 86, 5179–5186 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Pagano, R.E., Watanabe, R., Wheatley, C., Dominguez, M.: Applications of BODIPY-sphingolipid analogs to study lipid traffic and metabolism in cells. Methods Enzymol. 312, 523–534 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Rasmussen, J.-A.M., Hermetter, A.: Chemical synthesis of fluorescent glycero- and sphingolipids. Prog. Lipid Res. 47, 436–460 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Bittman, R.: The 2003 ASBMB-avanti award in lipids address: applications of novel synthetic lipids to biological problems. Chem. Phys. Lipids 129, 111–131 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Pagano, R.E., Martin, O.C., Kang, H.C., Haugland, R.P.: A novel fluorescent ceramide analog for studying membrane traffic in animal-cells - accumulation at the Golgi-apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113, 1267–1279 (1991)

    Article  CAS  PubMed  Google Scholar 

  32. Gretskaya, N.M., Bezuglov, V.V.: Synthesis of BODIPYA® FL C5-Labeled D-erythro- and L-threo-lactosylceramides. Chem. Nat. Compd. 49, 17–20 (2013)

    Article  CAS  Google Scholar 

  33. Vo-Hoang, Y., Micouin, L., Ronet, C., Gachelin, G., Bonin, M.: Total enantioselective synthesis and in vivo biological evaluation of a novel fluorescent BODIPY α-galactosylceramide. Chembiochem 4, 27–33 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Singh, R.D., Liu, Y.D., Wheatley, C.L., Holicky, E.L., Makino, A., Marks, D.L., Kobayashi, T., Subramaniam, G., Bittman, R., Pagano, R.E.: Caveolar endocytosis and microdomain association of a glycosphingolipid analog is dependent on its sphingosine stereochemistry. J. Biol. Chem. 281, 30660–30668 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. Singh, R.D., Puri, V., Valiyaveettil, J.T., Marks, D.L., Bittman, R., Pagano, R.E.: Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell 14, 3254–3265 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu, Y.D., Bittman, R.: Synthesis of fluorescent lactosylceramide stereoisomers. Chem. Phys. Lipids 142, 58–69 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Mikhalyov, I.I., Molotkovsky, J.G.: Synthesis and characteristics of fluorescent BODIPY-labeled gangliosides. Russ. J. Bioorg. Chem. 29, 168–174 (2003)

    Article  CAS  Google Scholar 

  38. Schwarzmann, G., Wendeler, M., Sandhoff, K.: Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system. Glycobiology 15, 1302–1311 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Sarver, S.A., Keithley, R.B., Essaka, D.C., Tanaka, H., Yoshimura, Y., Palcic, M.M., Hindsgaul, O., Dovichi, N.J.: Preparation and electrophoretic separation of Bodipy-Fl-labeled glycosphingolipids. J. Chromatogr. A 1229, 268–273 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Whitmore, C.D., Hindsgaul, O., Palcic, M.M., Schnaar, R.L., Dovichi, N.J.: Metabolic cytometry. Glycosphingolipid metabolism in single cells. Anal. Chem. 79, 5139–5142 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. Dada, O.O., Essaka, D.C., Hindsgaul, O., Palcic, M.M., Prendergast, J., Schnaar, R.L., Dovichi, N.J.: Nine orders of magnitude dynamic range: picomolar to millimolar concentration measurement in capillary electrophoresis with laser induced fluorescence detection employing cascaded avalanche photodiode photon counters. Anal. Chem. 83, 2748–2753 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Essaka, D.C., Prendergast, J., Keithley, R.B., Palcic, M.M., Hindsgaul, O., Schnaar, R.L., Dovichi, N.J.: Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons. Anal. Chem. 84, 2799–2804 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Keithley, R.B., Rosenthal, A.S., Essaka, D.C., Tanaka, H., Yoshimura, Y., Palcic, M.M., Hindsgaul, O., Dovichi, N.J.: Capillary electrophoresis with three-color fluorescence detection for the analysis of glycosphingolipid metabolism. Analyst 138, 164–170 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Daikoku, S., Ono, Y., Ohtake, A., Hasegawa, Y., Fukusaki, E., Suzuki, K., Ito, Y., Goto, S., Kanie, O.: Fluorescence-monitored zero dead-volume nanoLC-microESI-QIT-TOF MS for analysis of fluorescently tagged glycosphingolipids. Analyst 136, 1046–1050 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. Gross, H.J., Brossmer, R.: Enzymatic introduction of a fluorescent sialic-acid into oligosaccharide chains of glycoproteins. Eur. J. Biochem. 177, 583–589 (1988)

    Article  CAS  PubMed  Google Scholar 

  46. Gross, H.J., Sticher, U., Brossmer, R.: A highly sensitive fluorometric assay for sialyltransferase activity using CMP-9-fluoresceinyl-NeuAc as donor. Anal. Biochem. 186, 127–134 (1990)

    Article  CAS  PubMed  Google Scholar 

  47. Gross, H.J., Brossmer, R.: Characterization of human plasma sialyltransferase using a novel fluorometric assay. Clin. Chim. Acta 197, 237–248 (1991)

    Article  CAS  PubMed  Google Scholar 

  48. Gross, H.J.: Fluorescent CMP-sialic acids as a tool to study the specificity of the CMP-sialic acid carrier and the glycoconjugate sialylation in permeabilized cells. Eur. J. Biochem. 203, 269–275 (1992)

    Article  CAS  PubMed  Google Scholar 

  49. Wu, X.J., Tian, Y.P., Yu, M.Z., Lin, B.J., Han, J.H., Han, S.F.: A fluorescently labelled sialic acid for high performance intraoperative tumor detection. Biomater. Sci. 2, 1120–1127 (2014)

    Article  CAS  Google Scholar 

  50. Suzuki, K., Ohtake, A., Ito, Y., Kanie, O.: Synthesis of a fluorescently tagged sialic acid analogue useful for live-cell imaging. Chem. Commun. 48, 9744–9746 (2012)

    Article  CAS  Google Scholar 

  51. Turner, D.I., Chakraborty, N., d’Alarcao, M.: A fluorescent inositol phosphate glycan stimulates lipogenesis in rat adipocytes by extracellular activation alone. Bioorg. Med. Chem. Lett. 15, 2023–2025 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. Hagihara, S., Miyazaki, A., Matsuo, I., Tatami, A., Suzuki, T., Ito, Y.: Fluorescently labeled inhibitor for profiling cytoplasmic peptide: N-glycanase. Glycobiology 17, 1070–1076 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Hekmat, O., Florizone, C., Kim, Y.-W., Eltis, L.D., Warren, R.A.J., Withers, S.G.: Specificity fingerprinting of retaining β-1,4-glycanases in the Cellulomonas fimi secretome using two fluorescent mechanism-based probes. Chembiochem 8, 2125–2132 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki, K., Tobe, A., Adachi, S., Daikoku, S., Hasegawa, Y., Shioiri, Y., Kobayashi, M., Kanie, O.: N-Hexyl-4-aminobutyl glycosides for investigating structures and biological functions of carbohydrates. Org. Biomol. Chem. 7, 4726–4733 (2009)

    Article  CAS  PubMed  Google Scholar 

  55. Uppal, T., Bhupathiraju, N.V.S.D.K., Vicente, M.G.H.: Synthesis and cellular properties of near-IR BODIPY-PEG and carbohydrate conjugates. Tetrahedron 69, 4687–4693 (2013)

    Article  CAS  Google Scholar 

  56. Papalia, T., Siracusano, G., Colao, I., Barattucci, A., Aversa, M.C., Serroni, S., Zappalà, G., Campagna, S., Sciortino, M.T., Puntoriero, F., Bonaccorsi, P.: Cell internalization of BODIPY-based fluorescent dyes bearing carbohydrate residues. Dyes Pigments 110, 67–71 (2014)

    Article  CAS  Google Scholar 

  57. van Tilbeurgh, H., Loontiens, F.G., Debruyne, C.K., Claeyssens, M.: Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases. Methods Enzymol. 160, 45–59 (1988)

    Article  Google Scholar 

  58. Öckerman, P.A.: Identity of β-glucosidase β-xylosidase and one of β-galactosidase activities in human liver when assayed with 4-methylumbelliferyl-β-D-glycosides studies in cases of Gauchers disease. Biochim. Biophys. Acta 165, 59–62 (1968)

    Article  PubMed  Google Scholar 

  59. van Tilbeurgh, H., Claeyssens, M., de Bruyne, C.K.: The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 149, 152–156 (1982)

    Article  Google Scholar 

  60. Szweda, R., Spohr, U., Lemieux, R.U., Schindler, D., Bishop, D.F., Desnick, R.J.: Synthesis of 4-methylumbelliferyl glycosides for the detection of α-D-galactopyranosaminidases and β-D-galactopyranosaminidases. Can. J. Chem. 67, 1388–1391 (1989)

    Article  CAS  Google Scholar 

  61. Lee, J.C., Chang, S.W., Liao, C.C., Chi, F.C., Chen, C.S., Wen, Y.S., Wang, C.C., Kulkarni, S.S., Puranik, R., Liu, Y.H., Hung, S.C.: From D-glucose to biologically potent L-hexose derivatives: synthesis of α-L-iduronidase fluorogenic detector and the disaccharide moieties of bleomycin A2 and heparan sulfate. Chem. Eur. J. 10, 399–415 (2004)

    Article  CAS  PubMed  Google Scholar 

  62. Yasukochi, T., Fukase, K., Suda, Y., Takagaki, K., Endo, M., Kusumoto, S.: Enzymatic synthesis of 4-methylumbelliferyl glycosides of trisaccharide and core tetrasaccharide, Gal(β1-3)Gal(β1-4)Xyl and GlcA(β1-3)Gal(β1-3)Gal(β1-4)Xyl, corresponding to the linkage region of proteoglycans. Bull. Chem. Soc. Jpn. 70, 2719–2725 (1997)

    Article  CAS  Google Scholar 

  63. Wang, L.X., Keyhani, N.O., Roseman, S., Lee, Y.C.: 4-Methylumbelliferyl glycosides of N-acetyl 4-thiochito-oligosaccharides as fluorogenic substrates for chitodextrinase from Vibrio furnissii. Glycobiology 7, 855–860 (1997)

    Article  CAS  PubMed  Google Scholar 

  64. Honda, Y., Tanimori, S., Kirihata, M., Kaneko, S., Tokuyasu, K., Hashimoto, M., Watanabe, T.: Chemo- and enzymatic synthesis of partially and fully N-deacetylated 4-methylumbelliferyl chitobiosides: fluorogenic substrates for chitinase. Bioorg. Med. Chem. Lett. 10, 827–829 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. Eneyskaya, E.V., Ivanen, D.R., Shabalin, K.A., Kulminskaya, A.A., Backinowsky, L.V., Brumer III, H., Neustroev, K.N.: Chemo-enzymatic synthesis of 4-methylumbelliferyl β-(1- > 4)-D-xylooligosides: new substrates for β-D-xylanase assays. Org. Biomol. Chem. 3, 146–151 (2005)

    Article  CAS  PubMed  Google Scholar 

  66. Mazzaferro, L.S., Piñuel, L., Erra-Balsells, R., Giudicessi, S.L., Breccia, J.D.: Transglycosylation specificity of Acremonium sp α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside. Carbohydr. Res. 347, 69–75 (2012)

    Article  CAS  PubMed  Google Scholar 

  67. Deng, L.H., Tsybina, P., Gregg, K.J., Mosi, R., Zandberg, W.F., Boraston, A.B..., Vocadlo, D.J.: Synthesis of 4-methylumbelliferyl α-D-mannopyranosyl-(1- > 6)-β-D-mannopyranoside and development of a coupled fluorescent assay for GH125 exo-α-1,6-mannosidases. Bioorg. Med. Chem. 21, 4839–4845 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. Zbiral, E., Schreiner, E., Salunkhe, M.M., Schulz, G., Kleineidam, R.G., Schauer, R.: Synthesis of the 4-methylumbelliferyl 2α-glycosides of 7-epi-N-acetylneuraminic, 8-epi-N-acetylneuraminic, and 7,8-bis(epi)-N-acetylneuraminic acids, as well as of 7-deoxy-N-acetylneuraminic, 8-deoxy-N-acetylneuraminic, 9-deoxy-N-acetylneuraminic, and 4,7-dideoxy-N-acetylneuraminic acids and their behavior towards sialidase from Vibrio cholerae. Liebigs Ann. Chem. 519–526 (1989)

  69. Kleineidam, R.G., Furuhata, K., Ogura, H., Schauer, R.: 4-Methylumbelliferyl-α-glycosides of partially O-acetylated N-acetylneuraminic acids as substrates of bacterial and viral sialidases. Biol. Chem. Hoppe Seyler 371, 715–719 (1990)

    Article  CAS  PubMed  Google Scholar 

  70. Zamora, C.Y., d’Alarcao, M., Kumar, K.: Fluorogenic sialic acid glycosides for quantification of sialidase activity upon unnatural substrates. Bioorg. Med. Chem. Lett. 23, 3406–3410 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Engstler, M., Talhouk, J.W., Smith, R.E., Schauer, R.: Chemical synthesis of 4-trifluoromethylumbelliferyl-α-D-N-acetylneuraminic acid glycoside and its use for the fluorometric detection of poorly expressed natural and recombinant sialidases. Anal. Biochem. 250, 176–180 (1997)

    Article  CAS  PubMed  Google Scholar 

  72. Ge, Y., Antoulinakis, E.G., Gee, K.R., Johnson, I.: An ultrasensitive, continuous assay for xylanase using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferyl β-D-xylobloside. Anal. Biochem. 362, 63–68 (2007)

    Article  CAS  PubMed  Google Scholar 

  73. Wu, M., Nerinckx, W., Piens, K., Ishida, T., Hansson, H., Sandgren, M., Ståhlberg, J.: Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J. 280, 184–198 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. Wiederschain, G.Y., Kozlova, I.K., Ilyina, G.S., Mikhaylova, M.A., Beyer, E.M.: The use of glycosides of 6-acylamino and 8-acylamino-4-methylumbel-liferone in studies of the specificity and properties of human lysosomal glycolipid hydrolases. Carbohydr. Res. 224, 255–272 (1992)

    Article  PubMed  Google Scholar 

  75. Miller, S.P.F., French, S.A., Kaneski, C.R.: Synthesis and characterization of a novel lysosomotropic enzyme substrate that fluoresces at intracellular pH. J. Org. Chem. 56, 30–34 (1991)

    Article  CAS  Google Scholar 

  76. Renaudet, O., Dumy, P.: Oxime-based synthesis of new chromogenic and fluorogenic oligosaccharides. Eur. J. Org. Chem. 5383–5386 (2008)

  77. Ibatullin, F.M., Banasiak, A., Baumann, M.J., Greffe, L., Takahashi, J., Mellerowicz, E.J., Brumer, H.: A real-time fluorogenic assay for the visualization of glycoside hydrolase activity in planta. Plant Physiol. 151, 1741–1750 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Yadav, A.K., Shen, D.L., Shan, X., He, X., Kermode, A.R., Vocadlo, D.J.: Fluorescence-quenched substrates for live cell imaging of human glucocerebrosidase activity. J. Am. Chem. Soc. 137, 1181–1189 (2015)

    Article  CAS  PubMed  Google Scholar 

  79. Park, S., Lee, M.R., Shin, I.: Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem. Commun. 4389–4399 (2008)

  80. Kiessling, L.L., Splain, R.A.: Chemical approaches to glycobiology. Annu. Rev. Biochem. 79, 619–653 (2010)

    Article  CAS  PubMed  Google Scholar 

  81. Chevolot, Y.: Carbohydrate microarrays: methods and protocols. Methods in Molecular Biology, vol. 808. Humana Press, New York (2012)

  82. Lee, M., Shin, I.: Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett. 7, 4269–4272 (2005)

    Article  CAS  PubMed  Google Scholar 

  83. Park, S., Sung, J.W., Shin, I.: Fluorescent glycan derivatives: their use for natural glycan microarrays. ACS Chem. Biol. 4, 699–701 (2009)

    Article  CAS  PubMed  Google Scholar 

  84. Xia, B.Y., Kawar, Z.S., Ju, T.Z., Alvarez, R.A., Sachdev, G.P., Cummings, R.D.: Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2, 845–850 (2005)

    Article  CAS  PubMed  Google Scholar 

  85. Song, X.Z., Xia, B.Y., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Quantifiable fluorescent glycan microarrays. Glycoconj. J. 25, 15–25 (2008)

    Article  CAS  PubMed  Google Scholar 

  86. Song, X.Z., Xia, B.Y., Stowell, S.R., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16, 36–47 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Song, X.Z., Lasanajak, Y., Rivera-Marrero, C., Luyai, A., Willard, M., Smith, D., Cummings, R.: Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal. Biochem. 395, 151–160 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Gamblin, D.P., Scanlan, E.M., Davis, B.G.: Glycoprotein synthesis: an update. Chem. Rev. 109, 131–163 (2009)

    Article  CAS  PubMed  Google Scholar 

  89. Bohorov, O., Andersson-Sand, H., Hoffmann, J., Blixt, O.: Arraying glycomics: a novel bi-functional spacer for one-step microscale derivatization of free reducing glycans. Glycobiology 16, 21C–27C (2006)

    Article  CAS  PubMed  Google Scholar 

  90. Niikura, K., Kamitani, R., Kurogochi, M., Uematsu, R., Shinohara, Y., Nakagawa, H., Deguchi, K., Monde, K., Kondo, H., Nishimura, S.I.: Versatile glycoblotting nanoparticles for high-throughput protein glycomics. Chem. Eur. J. 11, 3825–3834 (2005)

    Article  CAS  PubMed  Google Scholar 

  91. Vila-Perelló, M., Gallego, R.G., Andreu, D.: A simple approach to well-defined sugar-coated surfaces for interaction studies. Chembiochem 6, 1831–1838 (2005)

    Article  PubMed  CAS  Google Scholar 

  92. Zhou, X.C., Zhou, J.H.: Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens. Bioelectron. 21, 1451–1458 (2006)

    Article  CAS  PubMed  Google Scholar 

  93. Tarentino, A.L., Plummer, T.H.: Enzymatic deglycosylation of asparagine-linked glycans - purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 230, 44–57 (1994)

    Article  CAS  PubMed  Google Scholar 

  94. Patel, T.P., Parekh, R.B.: Release of oligosaccharides from glycoproteins by hydrazinolysis. Methods Enzymol. 230, 57–66 (1994)

    Article  CAS  PubMed  Google Scholar 

  95. Galanina, O., Feofanov, A., Tuzikov, A.B..., Rapoport, E., Crocker, P.R., Grichine, A., Egret-Charlier, M., Vigny, P., Le Pendu, J., Bovin, N.V.: Fluorescent carbohydrate probes for cell lectins. Spectrochim. Acta A 57, 2285–2296 (2001)

    Article  CAS  Google Scholar 

  96. Erdogan, B., Wilson, J.N., Bunz, U.H.F.: Synthesis and mesoseopic order of a sugar-coated poly(p-phenyleneethynylene). Macromolecules 35, 7863–7864 (2002)

    Article  CAS  Google Scholar 

  97. Lavigne, J.J., Broughton, D.L., Wilson, J.N., Erdogan, B., Bunz, U.H.F.: “Surfactochromic” conjugated polymers: surfactant effects on sugar-substituted PPEs. Macromolecules 36, 7409–7412 (2003)

    Article  CAS  Google Scholar 

  98. Disney, M.D., Zheng, J., Swager, T.M., Seeberger, P.H.: Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J. Am. Chem. Soc. 126, 13343–13346 (2004)

    Article  CAS  PubMed  Google Scholar 

  99. Kelly, T.L., Lam, M.C.W., Wolf, M.O.: Carbohydrate-labeled fluorescent microparticles and their binding to lectins. Bioconjug. Chem. 17, 575–578 (2006)

    Article  CAS  PubMed  Google Scholar 

  100. Chen, Q., Xu, Y.H., Du, Y.G., Han, B.H.: Triphenylamine-based fluorescent conjugated glycopolymers: synthesis, characterization and interactions with lectins. Polymer 50, 2830–2835 (2009)

    Article  CAS  Google Scholar 

  101. Shi, J.B., Cai, L.P., Pu, K.Y., Liu, B.: Synthesis and characterization of water-soluble conjugated glycopolymer for fluorescent sensing of concanavalin A. Chem. Asian. J. 5, 301–308 (2010)

    Article  CAS  PubMed  Google Scholar 

  102. Kim, I.B., Wilson, J.N., Bunz, U.H.F.: Mannose-substituted PPEs detect lectins: a model for Ricin sensing. Chem. Commun. 1273–1275 (2005)

  103. Xue, C.H., Jog, S.P., Murthy, P., Liu, H.Y.: Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli. Biomacromolecules 7, 2470–2474 (2006)

    Article  CAS  PubMed  Google Scholar 

  104. Xue, C.H., Donuru, V.R.R., Liu, H.Y.: Facile, versatile prepolymerization and postpolymerization functionalization approaches for well-defined fluorescent conjugated fluorene-based glycopolymers. Macromolecules 39, 5747–5752 (2006)

    Article  CAS  Google Scholar 

  105. Phillips, R.L., Kim, I.B., Carson, B.E., Tidbeck, B., Bai, Y., Lowary, T.L., Tollbert, L.M., Bunz, U.H.F.: Sugar-substituted poly(p-phenyleneethynylene)s: sensitivity enhancement toward lectins and bacteria. Macromolecules 41, 7316–7320 (2008)

    Article  CAS  Google Scholar 

  106. Xue, C., Velayudham, S., Johnson, S., Saha, R., Smith, A., Brewer, W., Murthy, P., Bagley, S.T., Liu, H.: Highly water-soluble, fluorescent, conjugated fluorene-based glycopolymers with poly(ethylene glycol)-tethered spacers for sensitive detection of Escherichia coli. Chem. Eur. J. 15, 2289–2295 (2009)

    Article  CAS  PubMed  Google Scholar 

  107. Phillips, R.L., Kim, I.B., Tolbert, L.M., Bunz, U.H.F.: Fluorescence self-quenching of a mannosylated poly(p-phenyleneethynylene) induced by concanavalin A. J. Am. Chem. Soc. 130, 6952–6954 (2008)

    Article  CAS  PubMed  Google Scholar 

  108. Yang, W., Pan, C.Y., Luo, M.D., Zhang, H.B.: Fluorescent mannose-functionalized hyperbranched poly(amido amine)s: synthesis and interaction with E. coli. Biomacromolecules 11, 1840–1846 (2010)

    Article  CAS  PubMed  Google Scholar 

  109. Ruff, Y., Buhler, E., Candau, S.J., Kesselman, E., Talmon, Y., Lehn, J.M.: Glycodynamers: dynamic polymers bearing oligosaccharides residues - generation, structure, physicochemical, component exchange, and lectin binding properties. J. Am. Chem. Soc. 132, 2573–2584 (2010)

    Article  CAS  PubMed  Google Scholar 

  110. Ruff, Y., Lehn, J.M.: Glycodynamers: fluorescent dynamic analogues of polysaccharides. Angew. Chem. Int. Ed. 47, 3556–3559 (2008)

    Article  CAS  Google Scholar 

  111. Kikkeri, R., Garcia-Rubio, I., Seeberger, P.H.: Ru(II)-carbohydrate dendrimers as photoinduced electron transfer lectin biosensors. Chem. Commun. 235–237 (2009)

  112. Tian, X., Pai, J., Baek, K.H., Ko, S.K., Shin, I.: Fluorophore-labeled, peptide-based glycoclusters: synthesis, binding properties for lectins, and detection of carbohydrate-binding proteins in cells. Chem. Asian. J. 6, 2107–2113 (2011)

    Article  CAS  PubMed  Google Scholar 

  113. Kikkeri, R., Hossain, L.H., Seeberger, P.H.: Supramolecular one-pot approach to fluorescent glycodendrimers. Chem. Commun. 2127–2129 (2008)

  114. Chen, Q.S., Wei, W.L., Lin, J.M.: Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens. Bioelectron. 26, 4497–4502 (2011)

    Article  CAS  PubMed  Google Scholar 

  115. Grünstein, D., Maglinao, M., Kikkeri, R., Collot, M., Barylyuk, K., Lepenies, B., Kamena, F., Zenobi, R., Seeberger, P.H.: Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. J. Am. Chem. Soc. 133, 13957–13966 (2011)

    Article  PubMed  CAS  Google Scholar 

  116. Zhou, J., Butchosa, N., Jayawardena, H.S.N., Zhou, Q., Yan, M.D., Ramström, O.: Glycan-functionalized fluorescent chitin nanocrystals for biorecognition applications. Bioconjug. Chem. 25, 640–643 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Sanji, T., Shiraishi, K., Nakamura, M., Tanaka, M.: Fluorescence turn-on sensing of lectins with mannose-substituted tetraphenylethenes based on aggregation-induced emission. Chem. Asian. J. 5, 817–824 (2010)

    Article  CAS  PubMed  Google Scholar 

  118. Das, S., Mandal, S., Mukhopadhyay, B., Zade, S.S.: Synthesis of carbohydrate-functionalized thiophene-capped cyclopenta[c]thiophene for concanavalin A recognition. Tetrahedron Lett. 53, 1464–1467 (2012)

    Article  CAS  Google Scholar 

  119. Wang, K.R., Wang, Y.Q., An, H.W., Zhang, J.C., Li, X.L.: A Triazatruxene-based glycocluster as a fluorescent sensor for concanavalin A. Chem. Eur. J. 19, 2903–2909 (2013)

    Article  CAS  PubMed  Google Scholar 

  120. Wang, J.X., Chen, Q., Bian, N., Yang, F., Sun, J., Qi, A.D., Yan, C.G., Han, B.H.: Sugar-bearing tetraphenylethylene: novel fluorescent probe for studies of carbohydrate-protein interaction based on aggregation-induced emission. Org. Biomol. Chem. 9, 2219–2226 (2011)

    Article  CAS  PubMed  Google Scholar 

  121. Chen, X., Ramström, O., Yan, M.D.: Glyconanomaterials: emerging applications in biomedical research. Nano Res. 7, 1381–1403 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marin, M.J., Schofield, C.L., Field, R.A., Russell, D.A.: Glyconanoparticles for colorimetric bioassays. Analyst 140, 59–70 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. Robinson, A., Fang, J.M., Chou, P.T., Liao, K.W., Chu, R.M., Lee, S.J.: Probing lectin and sperm with carbohydrate-modified quantum dots. Chembiochem 6, 1899–1905 (2005)

    Article  CAS  PubMed  Google Scholar 

  124. Babu, P., Sinha, S., Surolia, A.: Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjug. Chem. 18, 146–151 (2007)

    Article  CAS  PubMed  Google Scholar 

  125. Bavireddi, H., Kikkeri, R.: Glyco-β-cyclodextrin capped quantum dots: synthesis, cytotoxicity and optical detection of carbohydrate-protein interactions. Analyst 137, 5123–5127 (2012)

    Article  CAS  PubMed  Google Scholar 

  126. Mukhopadhyay, B., Martins, M.B., Karamanska, R., Russell, D.A., Field, R.A.: Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Lett. 50, 886–889 (2009)

    Article  CAS  Google Scholar 

  127. Huang, C.C., Chen, C.T., Shiang, Y.C., Lin, Z.H., Chang, H.T.: Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin A and Escherichia coli. Anal. Chem. 81, 875–882 (2009)

    Article  CAS  PubMed  Google Scholar 

  128. Pfaff, A., Schallon, A., Ruhland, T.M., Majewski, A.P., Schmalz, H., Freitag, R., Müller, A.H.E.: Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging. Biomacromolecules 12, 3805–3811 (2011)

    Article  CAS  PubMed  Google Scholar 

  129. Kim, B.S., Yang, W.Y., Ryu, J.H., Yoo, Y.S., Lee, M.: Carbohydrate-coated nanocapsules from amphiphilic rod-coil molecule: binding to bacterial type 1 pili. Chem. Commun. 2035–2037 (2005)

  130. Ryu, J.H., Lee, E., Lim, Y.B., Lee, M.: Carbohydrate-coated supramolecular structures: transformation of nanofibers into spherical micelles triggered by guest encapsulation. J. Am. Chem. Soc. 129, 4808–4814 (2007)

    Article  CAS  PubMed  Google Scholar 

  131. Bonaccorsi, P., Aversa, M.C., Barattucci, A., Papalia, T., Puntoriero, F., Campagna, S.: Artificial light-harvesting antenna systems grafted on a carbohydrate platform. Chem. Commun. 48, 10550–10552 (2012)

    Article  CAS  Google Scholar 

  132. Maisonneuve, S., Métivier, R., Yu, P., Nakatani, K., Xie, J.: Multichromophoric sugar for fluorescence photoswitching. Beilstein J. Org. Chem. 10, 1471–1481 (2014)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Ågren, J.K.M., Billing, J.F., Grundberg, H.E., Nilsson, U.J.: Synthesis of a chiral and fluorescent sugar-based macrocycle by 1,3-dipolar cycloaddition. Synthesis 3141–3145 (2006)

  134. Xie, J., Menand, M., Maisonneuve, S., Métivier, R.: Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J. Org. Chem. 72, 5980–5985 (2007)

    Article  CAS  PubMed  Google Scholar 

  135. Hsieh, Y.C., Chir, J.L., Wu, H.H., Guo, C.Q., Wu, A.T.: Synthesis of a sugar-aza-crown ether-based cavitand as a selective fluorescent chemosensor for Cu2+ ion. Tetrahedron Lett. 51, 109–111 (2010)

    Article  CAS  Google Scholar 

  136. Hsieh, Y.C., Chir, J.L., Yang, S.T., Chen, S.J., Hu, C.H., Wu, A.T.: A sugar-aza-crown ether-based fluorescent sensor for Cu2+ and Hg2+ ions. Carbohydr. Res. 346, 978–981 (2011)

    Article  CAS  PubMed  Google Scholar 

  137. Hsieh, Y.C., Chir, J.L., Wu, H.H., Chang, P.S., Wu, A.T.: A sugar-aza-crown ether-based fluorescent sensor for Hg2+ and Cu2+. Carbohydr. Res. 344, 2236–2239 (2009)

    Article  CAS  PubMed  Google Scholar 

  138. Yu, Y.H., Bogliotti, N., Tang, J., Xie, J.: Synthesis and properties of carbohydrate-based BODIPY-functionalised fluorescent macrocycles. Eur. J. Org. Chem. 7749–7760 (2013)

  139. Thakur, A., Mandal, D., Deb, P., Mondal, B., Ghosh, S.: Synthesis of triazole linked fluorescent amino acid and carbohydrate bio-conjugates: a highly sensitive and skeleton selective multi-responsive chemosensor for Cu(II) and Pb(II)/Hg(II) ions. RSC Adv. 4, 1918–1928 (2014)

    Article  CAS  Google Scholar 

  140. Li, K.B., Zhang, H.L., Zhu, B., He, X.P., Xie, J., Chen, G.R.: A per-acetyl glycosyl rhodamine as a novel fluorescent ratiometric probe for mercury (II). Dyes Pigments 102, 273–277 (2014)

    Article  CAS  Google Scholar 

  141. Yang, L.J., Yalagala, R.S., Hutton, S., Lough, A., Yan, H.B.: Reactions of BODIPY fluorophore with cupric nitrate. Synlett 25, 2661–2664 (2014)

    Article  CAS  Google Scholar 

  142. Fei, Y.Y., Sun, Y.S., Li, Y.H., Lau, K., Yu, H., Chokhawala, H.A., Huang, S.S., Landry, J.P., Chen, X., Zhu, X.D.: Fluorescent labeling agents change binding profiles of glycan-binding proteins. Mol. Biosyst. 7, 3343–3352 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in Yan’s laboratory was funded by the Natural Science and Engineering Research Council of Canada. The authors wish to thank Dr. Dennis Whitefield for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Yalagala, R.S. & Yan, F. Fluorescently labelled glycans and their applications. Glycoconj J 32, 559–574 (2015). https://doi.org/10.1007/s10719-015-9611-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9611-9

Keywords

Navigation