Skip to main content

Advertisement

Log in

Impact of glycosylation on stability, structure and unfolding of soybean agglutinin (SBA): an insight from thermal perturbation molecular dynamics simulations

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosylation has been recognized as one of the most prevalent and complex post-translational modifications of proteins involving numerous enzymes and substrates. Its effect on the protein conformational transitions is not clearly understood yet. In this study, we have examined the effect of glycosylation on protein stability using molecular dynamics simulation of legume lectin soybean agglutinin (SBA). Its glycosylated moiety consists of high mannose type N-linked glycan (Man9GlcNAc2). To unveil the structural perturbations during thermal unfolding of these two forms, we have studied and compared them to the experimental results. From the perspective of dynamics, our simulations revealed that the nonglycosylated monomeric form is less stable than corresponding glycosylated form at normal and elevated temperatures. Moreover, at elevated temperature thermal destabilization is more prominent in solvent exposed loops, turns and ends of distinct β sheets. SBA maintains it folded structure due to some important saltbridges, hydrogen bonds and hydrophobic interactions within the protein. The reducing terminal GlcNAc residues interact with the protein residues VAL161, PRO182 and SER225 via hydrophobic and via hydrogen bonding with ASN 9 and ASN 75. Our simulations also revealed that single glycosylation (ASN75) has no significant effect on corresponding cis peptide angle orientation. This atomistic description might have important implications for understanding the functionality and stability of Soybean agglutinin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SBA:

Soybean agglutinin

Gly_SBA:

Glycosylated soybean agglutinin

Non Gly_SBA:

Non glycosylated soybean agglutinin

References

  1. Spiro, R.G.: Adv. Protein Chem. Glycoproteins. 27, 349–467 (1973)

    Article  CAS  Google Scholar 

  2. Lis, H., Sharon, N.: Protein glycosylation structural and functional aspects. Eur. J. Biochem. 218(1), 1–27 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. Varki, A.: Biological roles of oligosaccharides. All of the theories are correct. Glycobiology 3(2), 97–130 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. Dwek, R.A.: Toward understanding the function of sugars. Glycobiology 96, 683–720 (1996)

    CAS  Google Scholar 

  5. Wang, C., Eufemi, M., Turano, C., Giartosio, A.: Soft materials: structure and dynamics. Biochemisty. 35, 7299–7307 (1996)

    Article  CAS  Google Scholar 

  6. Wormald, M.R., Dwek, R.A.: Glycoproteins: glycan presentation and protein-fold Stability. Structure 7, 7155–7160 (1999)

    Article  Google Scholar 

  7. Petrescu, A.J., Milac, A.L., Petrescu, S.M.: Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as Deduce from analysis of the SWISS-PROTdatabase. Biochim. Biophys. Acta 1473, 4–8 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Yamaguchi, H.: Chaperone-like functions of N-glycans in the formation and stabilization of protein conformation. Trends Glycosci Glyc. 14, 139–151 (2002)

    Article  Google Scholar 

  10. Mitra, N., Sharon, N., Surolia, A.: Role of N-linked glycan in the unfolding pathway of Erythrina corallodendron lectin. Biochemistry 42, 12208–12216 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Hanson, S.R.: The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc. Natl. Acad. Sci. U. S. A. 106, 3131–3136 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Somnuke, P., Hauhart, R.E., Atkinson, J.P., Diamond, M.S., Avirutnan, P.: N- linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413(2), 253–264 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. O’Connor, S.E., Pohlmann, J., Imperiali, B.: Probing the effect of the outer saccharideresidue of N-Linked glycans on peptide conformation. J. Am. Chem. Soc. 123, 6187–6188 (2001)

    Article  PubMed  Google Scholar 

  14. Bosques, C.J., Tschampel, S.M., Woods, R.J., Imperiali, B.: Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J. Am. Chem. Soc. 126, 8421–8425 (2004)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shental-Bechor, D., Levy, Y.: Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. U. S. A. 105, 8256–8261 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sola, R.J., Griebenow, K.: Effects of glycosylation on the stability of protein Pharmaceuticals. J. Pharm. Sci. 98, 1223–1245 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Li, S., Polonis, V., Isobe, H., Zaghouani, H., Guinea, R., Moran, T., Bona, C., Palese, P.: Chimeric influenza virus induces neutralizing antibodies and cytotoxic T cells against human immunodeficiency virus type 1. J. Virol. 67, 6659–6666 (1993)

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Yamaguchi, H., Uchida, M.: A chaperone-like function of intramolecular high- mannose chains in the oxidative refolding of bovine pancreatic RNase. B . J. Biochem. (Tokyo) 120, 474–477 (1996)

    Article  CAS  Google Scholar 

  20. Nishimura, I., Uchida, M., Inohana, Y., Setoh, K., Daba, K., Nishimura, S., Yamaguchi, H.: Oxidative refolding of bovine pancreatic RNases A and B promoted by Asn-Glycans. J. Biochem. (Tokyo) 123, 516–520 (1998)

    Article  CAS  Google Scholar 

  21. Dessen, A., Gupta, D., Sabesan, S., Brewer, C.F., Sacchettini, J.C.: X-ray crystal Structure of the soybean agglutinin cross-linked with a biantennary analog of the blood group I carbohydrate antigen. Bio-chemistry. 34, 4933–4942 (1995)

    CAS  Google Scholar 

  22. Sinha, S., Gupta, G., Vijayan, M., Surolia, A.: Subunit assembly of plant lectins. Curr. Opin. Struct. Biol. 17, 498–505 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Sinha, S., Mitra, N., Kumar, G., Bajaj, K., Surolia, A.: Unfolding studies on soybean agglutinin and concanavalin a tetramers: a comparative account. Biophys. J. 88(2), 1300–1310 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sinha, S., Surolia, A.: Oligomerization endows enormous stability to soybean agglutinin: a comparison of the stability of monomer and tetramer of soybean agglutinin. Biophys. J. 88(6), 4243–4251 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sinha, S., Surolia, A.: Attributes of glycosylation in the establishment of the unfolding pathway of soybean agglutinin. Biophys. J. 92(1), 208–216 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bernstein, F.C., Koetzle, T.F., Williams, G.J.: The Protein Data Bank: a computerbased archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977)

    Article  CAS  PubMed  Google Scholar 

  27. Buts, L., Dao-Thi, M.H., Loris, R., Wyns, L., Etzler, M., Hamelryck, T.: Weak protein- protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus. J. Mol. Biol. 309(1), 193–201 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Bohne, A., Lang, E., Von der Lieth, C.W.: SWEET - WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics 15, 767–768 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Brooks, B.R., Brooks 3rd, C.L., Mackerell Jr., A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  CAS  Google Scholar 

  30. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipo, C., Skeel, R.D., Kalé, L., Schulten, K.J.: Scalable molecular dynamics with NAMD. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  31. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  32. Martyna, G.J., Tobias, D.J., Klein, M.L.: Conformational study of N-terminal prion peptides by molecular dynamics simulations. J. Chem. Phys. 101, 4177–4189 (1994)

    Article  CAS  Google Scholar 

  33. Darden, T., York, D., Pedersen, L.G.: Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. Chem. Phys. 98, 10089–10092 (1983)

    Google Scholar 

  34. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  CAS  Google Scholar 

  35. Humphrey, W., Dalke, A., Schulten, K.: VMD - visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

  36. Homans, S.W., Dwek, R.A., Rademacher, T.: Tertiary structure in N-linked oligosaccharides. Biochemistry 26, 6553–6560 (1987)

    Article  CAS  PubMed  Google Scholar 

  37. Homans, S.W., Pastore, A., Dwek, R.A., Rademacher, T.W.: Structure and dynamics in oligomannose-type oligosaccharides. Biochemistry 26, 6649–6655 (1987)

    Article  CAS  PubMed  Google Scholar 

  38. Qasba, P.K., Balaji, P.V., Rao, V.S.R.: Molecular dynamics simulations of oligosaccharides and their conformation in the crystal structure of lectin-carbohydrate complex: importance of the torsion angle ψ for the orientation of α1,6-arm. Glycobiology 4, 805–815 (1994)

    Article  CAS  PubMed  Google Scholar 

  39. Petrescu, A.J., Petrescu, S.M., Dwek, R.A., Wormland, M.R.: Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14(2), 103–114 (2003)

    Article  PubMed  Google Scholar 

  40. Dorland, L., van Halbeek, H., Vleigenthart, J.F., Lis, H., Sharon, N.: Primary structure of the carbohydrate chain of soybean agglutinin. A reinvestigation by high resolution 1H NMR spectroscopy. J. Biol. Chem 256, 7708–7711 (1981)

    CAS  PubMed  Google Scholar 

  41. Olsen, L.R., Dessen, A., Gupta, D., Sabesan, S., Sacchettini, J.C., Brewer, C.F.: X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry 36, 15073–15080 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. Kaushik, S., Mohanty, D., Surolia, A.: ROLE of glycosylation in structure and stability of Erythrina corallodendron lectin (EcorL): a molecular dynamics study. Protein Sci. 20, 465–481 (2010)

    Article  PubMed Central  Google Scholar 

  43. Mitra, N., Sinha, S., Ramya, T.N.C., Surolia, A.: N-linked oligosaccharides as out-fitters for glycoprotein folding, form and function. Trends in Biochem. Sci. 31, 156–163 (2006)

    Article  CAS  Google Scholar 

  44. Kaushik, S., Mohanty, D., Surolia, A.: Molecular dynamics simulations on ParIntercerebralis Major Peptide-C (PMP-C) reveal the role of glycosylation and disulfide bond Structura stability and function. J. Bimolecular Struct. Dyn. J. Bimolecular Struct Dyn. 29, 905–921 (2012)

    Article  CAS  Google Scholar 

  45. Gruia, A.D., Fischer, S., Smith, J.C.: Molecular dynamics simulation reveals a Surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal Nuclease. Proteins 50, 507–515 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. Chan, C.H., Yu, T.H., Wong, K.B.: Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One 6(6), e21624 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by a project funded by the Department of Biotechnology, Government of India [No. BT/PR13421/BID/07/307/2009]. AS holds Bhatnagar Fellowship of the Council of Scientific and Industrial Research, India

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avadhesha Surolia or Chaitali Mukhopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, S., Surolia, A. & Mukhopadhyay, C. Impact of glycosylation on stability, structure and unfolding of soybean agglutinin (SBA): an insight from thermal perturbation molecular dynamics simulations. Glycoconj J 32, 371–384 (2015). https://doi.org/10.1007/s10719-015-9601-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9601-y

Keywords

Navigation