Skip to main content
Log in

Chemical approach for target-selective degradation of oligosaccharides using photoactivatable organic molecules

  • MINI-REVIEW
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Molecular design, chemical synthesis, and biological evaluation of several organic molecules, which can target-selectively photodegrade oligosaccharides by irradiation with a specific wavelength of light under mild conditions without any additives, are introduced. These novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of oligosaccharides but also novel therapeutic drugs targeting biologically important oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ernst, B., Hart, G.W., Sinaÿ, P. (eds.): Carbohydrate in Chemistry & Biology. Wiley, Weinheim (2000)

    Google Scholar 

  2. Kamerling, J.P., Boons, G.J., Lee, Y.C., Suzuki, A., Taniguchi, N., Voragen, A.G.J. (eds.): Comprehensive Glycoscience. Elsevier, Oxford (2007)

    Google Scholar 

  3. Ishii, M., Matsumura, S., Toshima, K.: Target-selective degradation of oligosaccharuides by a light-activated small-molecule lectin hybrid. Angew. Chem. Int. Ed. 46, 8396–8399 (2007)

    Article  CAS  Google Scholar 

  4. Takahashi, D., Hirono, S., Hayashi, C., Igarashi, M., Nishimura, Y., Toshima, K.: Photodegradation of target oligosaccharides by light-activated small molecules. Angew. Chem. Int. Ed. 49, 10096–10100 (2010)

    Article  CAS  Google Scholar 

  5. Nishibu, M., Takahashi, D., Toshima, K.: Carbohydrate recognition and photodegradation by an anthracene–Kemp’s acid hybrid. Org. Biomol. Chem. 10, 8393–8395 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. Bycroft, B.W. (ed.): Dictionary of Antibiotics & Related Substances. Chapman & Hall, London (1988)

    Google Scholar 

  7. Koch, T., Ropp, J.D., Sligar, S.G., Schuster, G.B.: Photocleavage of DNA-irradiation of quinone-containing reagents converts supercoiled to linear DNA. Photochem. Photobiol. 58, 554–558 (1993)

    Article  CAS  PubMed  Google Scholar 

  8. Toshima, K., Maeda, Y., Ouchi, H., Asai, A., Matsumura, S.: Carbohydrate-mediated DNA photocleavage: Design, synthesis, and evaluation of novel glycosyl anthraquinones. Bioorg. Med. Chem. Lett. 10, 2163–2165 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Bender, M.L., Komiyama, M. (eds.): Cyclodextrin Chemistry. Springer, New York (1978)

    Google Scholar 

  10. Simkovic, I., Alfoldi, J.: Acetylation of (4-O-methyl-d-glucurono)-d-xylan under homogeneous conditions using trifluoroacetic acid-acetic anhydride. Carbohydr. Res. 201, 346–348 (1990)

    Article  CAS  Google Scholar 

  11. Gibson, A.R., Melton, L.D., Slessor, K.N.: ω–Aldehydo sugars prepared by ninhydrin oxidation. Can. J. Chem. 52, 3095–3912 (1974)

    Article  Google Scholar 

  12. Aquino, A.M., Abelt, C.J., Berger, K.L., Darragh, C.M., Kelley, S.E., Cossette, M.V.: Synthesis and photochemistry of some anthraquinone-substituted β-cyclodextrins. J. Am. Chem. Soc. 112, 5819–5824 (1990)

    Article  CAS  Google Scholar 

  13. Lis, H., Sharon, N.: Lectins as cell recognition molecules. Science 246, 227–234 (1989)

    Article  PubMed  Google Scholar 

  14. Lotan, R., Skutelsky, E., Danon, D., Sharon, N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523 (1975)

    CAS  PubMed  Google Scholar 

  15. Ravishankar, R., Ravindran, M., Suguna, K., Surolia, A., Vijayan, M.: Crystal structure of the peanut lectin-T-antigen complex. Carbohydrate specificity generated by water bridges. Curr. Sci. 72, 855–861 (1997)

    CAS  Google Scholar 

  16. Springer, G.F.: T and TN, general carcinoma Auto-antigens. Science 224, 1198–1206 (1984)

    Article  CAS  PubMed  Google Scholar 

  17. Hamachi, I., Nagase, T., Shinkai, S.: A general semisynthetic method for fluorescent saccharide-biosensors based on lectin. J. Am. Chem. Soc. 122, 12065–12066 (2000)

    Article  CAS  Google Scholar 

  18. Daffe, M., Brennan, P.J., McNeil, M.: Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J. Biol. Chem. 265, 6734–6743 (1990)

    CAS  PubMed  Google Scholar 

  19. Mikušová, K., Yagi, T., Stern, R., McNeil, M.R., Besra, G.S., Crick, D.C., Brennan, P.J.: Biosynthesis of the galactan component of the mycobacterial cell wall. J. Biol. Chem. 275, 33890–33897 (2000)

    Article  PubMed  Google Scholar 

  20. Scherman, M.S., Winans, K.A., Stern, R.J., Jones, V., Bertozzi, C.R., McNeil, M.R.: Drug targeting Mycobacterium tuberculosis cell wall synthesis: Development of a microtiter plate-based screen for UDP-galactopyranose mutase and identification of an inhibitor from a uridine-based library. Antimicrob. Agents Chemother. 47, 378–382 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lorand, J.P., Edwards, J.O.: Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem. 24, 769–774 (1959)

    Article  CAS  Google Scholar 

  22. Springsteen, G., Wang, B.: A detailed examination of boronic acid-diol complexation. Tetrahedron 58, 5291–5300 (2002)

    Article  CAS  Google Scholar 

  23. James, T.D.: Boronic acid-based receptors and sensors for saccharides. In: Hall, D.G. (ed.) Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine, pp. 441–479. Wiley-VCH, Weinheim (2006)

    Chapter  Google Scholar 

  24. Norrild, J.C., Eggert, H.: Evidence for mono- and bisdentate boronate complexes of glucose in the furanose form. Application of 1 J C-C coupling constants as a structural probe. J. Am. Chem. Soc. 117, 1479–1484 (1995)

    Article  CAS  Google Scholar 

  25. Springsteen, G., Wang, B.: Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chem. Commun. 1608–1609 (2001)

  26. Djanashvili, K., Frullano, L., Peters, J.A.: Molecular recognition of sialic acid end groups by phenylboronates. Chem. Eur. J. 11, 4010–4018 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Navarre, W.W., Schneewind, O.: Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229 (1999)

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Kemp, D.S., Petrakis, K.S.: Synthesis and conformational analysis of cis, cis-1,3,5-trimet hylcyclohexane-1,3,5-tricarboxylic acid. J. Org. Chem. 46, 5140–5143 (1981)

    Article  CAS  Google Scholar 

  29. Askew, B., Ballester, P., Buhr, C., Jeong, K.S., Jones, S., Parris, K., Williams, K., Rebek Jr., J.: Molecular recognition with convergent functional groups. 6. Synthetic and structural studies with a model receptor for nucleic acid components. J. Am. Chem. Soc. 111, 1082–1090 (1989)

    Article  CAS  Google Scholar 

  30. Williams, K., Askew, B., Ballester, P., Buhr, C., Jeong, K.S., Jones, S., Rebek Jr., J.: Molecular recognition with convergent functional groups. 7. Energetics of adenine binding with model receptors. J. Am. Chem. Soc. 111, 1090–1094 (1989)

    Article  CAS  Google Scholar 

  31. Hayashi, N., Ujihara, T., Kohata, K.: Binding energy of tea catechin/caffeine complexes in water evaluated by titration experiments with 1H-NMR. Biosci. Biotechnol. Biochem. 68, 2512–2518 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Hirose, K.: A practical guide for the determination of binding constants. J. Incl. Phenom. Macrocycl. 39, 193–209 (2001)

    Article  CAS  Google Scholar 

  33. Toshima, K., Hasegawa, M., Shimizu, J., Matsumura, S.: Molecular design, chemical synthesis, and biological evaluation of anthracene-carbohydrate hybrids as novel DNA photocleaving and photoselective cytotoxic agents. ARKIVOC 28–35 (2004)

Download references

Acknowledgments

The authors wish to sincerely thank all of the co-authors of the references cited in this review article. This research was supported in part by Scientific Research (B) (No. 23310153 and 26282212), Scientific Research on Innovative Areas “Chemical Biology of Natural Products” (No. 24102528 and 26102738), and Grants-in-Aid for Young Scientists (B) (No. 22710220) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Conflict of interest

The authors declare that they are free from conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Toshima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toshima, K., Takahashi, D. Chemical approach for target-selective degradation of oligosaccharides using photoactivatable organic molecules. Glycoconj J 32, 475–482 (2015). https://doi.org/10.1007/s10719-015-9591-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9591-9

Keywords

Navigation