Glycoconjugate Journal

, Volume 32, Issue 3–4, pp 161–172 | Cite as

Glycan structure and serum half-life of recombinant CTLA4Ig, an immunosuppressive agent, expressed in suspension-cultured rice cells with coexpression of human β1,4-galactosyltransferase and human CTLA4Ig

  • Seung Hoon Kang
  • Hahn Sun Jung
  • Song Jae Lee
  • Cheon Ik Park
  • Sang Min Lim
  • Heajin Park
  • Byung Sun Kim
  • Kwang Heum Na
  • Gyeong Jin Han
  • Jae Woo Bae
  • Hyun Joo Park
  • Keuk Chan Bang
  • Byung Tae Park
  • Hye Seong Hwang
  • In-Soo Jung
  • Jae Il Kim
  • Doo Byung Oh
  • Dong Il Kim
  • Hirokazu Yagi
  • Koichi Kato
  • Dae Kyong KimEmail author
  • Ha Hyung KimEmail author
Original Article


Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) is an immunosuppressive therapeutic, and recently produced rice cell-derived hCTLA4Ig (hCTLA4IgP) reportedly exhibits in vitro immunosuppressive activities equivalent to those of Chinese hamster ovary cell-derived hCTLA4Ig (hCTLA4IgM). However, limitations of hCTLA4IgP include shortened in vivo half-life as well as the presence of nonhuman N-glycans containing (β1-2)-xylose and α1,3-fucose, which cause immunogenic reactions in humans. In the present study, human β1,4-galactose-extended hCTLA4IgP (hCTLA4IgP-Gal) was expressed through the coexpression of human β1,4-galactosyltransferase (hGalT) and hCTLA4Ig in an attempt to overcome these unfavorable effects. The results indicated that both encoding hGalT and hCTLA4Ig were successfully coexpressed, and the analysis of N-glycan and its relative abundance in purified hCTLA4IgP-Gal indicated that not only were the two glycans containing (β1-4)-galactose newly extended, but also glycans containing both β1,2-xylose and α1,3-fucose were markedly reduced and high-mannose-type glycans were increased compared to those of hCTLA4IgP, respectively. Unlike hCTLA4IgP, hCTLA4IgP-Gal was effective as an acceptor via (β1-4)-galactose for in vitro sialylation. Additionally, the serum half-life of intravenously injected hCTLA4IgP-Gal in Sprague–Dawley rats was 1.9 times longer than that of hCTLA4IgP, and the clearance pattern of hCTLA4IgP-Gal was close to that for hCTLA4IgM. These results indicate that the coexpression with hGalT and hCTLA4IgP is useful for both reducing glycan immunogens and increasing in vivo stability. This is the first report of hCTLA4Ig as an effective therapeutics candidate in glycoengineered rice cells.


Plant cell culture CTLA4Ig Human β1,4-galactosyltransferase N-glycan Half-life Clearance 



Nicotiana tabacum L. cv. Bright Yellow 2


Chinese hamster ovary


Cytotoxic T-lymphocyte antigen-4


Enzyme-linked immunosorbent assay








Glucose unit


Human cytotoxic T-lymphocyte antigen 4-immunoglobulin


CHO cell-derived human cytotoxic T-lymphocyte antigen 4-immunoglobulin


Rice cell-derived human cytotoxic T-lymphocyte antigen 4-immunoglobulin


β1,4-galactose-extended rice cell-derived human cytotoxic T-lymphocyte antigen 4-immunoglobulin


Human β1,4-galactosyltransferase


High-performance liquid chromatography


Horseradish peroxidase


Hygromycin selection marker


Maackia amurensis agglutinin








Ricinus communis agglutinin RCA120


Reverse transcription-polymerase chain reaction


Untranslated region





This study was supported by a grant (no. 2013M3A9B6075896) from the National Research Foundation of Korea, Republic of Korea. This work was also supported, in part, by the Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), Japan, and by Grants-in-Aid for Scientific Research (A) (no. 24249002) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethical Standards

The animal experiments were performed in accordance with approval granted by the Institutional Animal Care and Use Committee at Boryung Pharmaceutical Co. Ltd.


  1. 1.
    Saint-Jore-Dupas, C., Faye, L., Gomord, V.: From planta to pharma with glycosylation in the toolbox. Trends Biotechnol. 25, 317–323 (2007)CrossRefPubMedGoogle Scholar
  2. 2.
    Bosch, D., Castilho, A., Loos, A., Schots, A., Steinkellner, H.: N-glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 19, 5503–5512 (2013)CrossRefPubMedGoogle Scholar
  3. 3.
    Jenkins, N., Curling, E.M.: Glycosylation of recombinant proteins: problems and prospects. Enzym. Microb. Technol. 16, 354–364 (1994)CrossRefGoogle Scholar
  4. 4.
    Chrispeels, M.J., Faye, L.: The production of recombinant glycomproteins with defiined non-immunogenic glycans. In: Owen, M.R.L., Pen, J. (eds.) Transgenic Plants : A Production System for Industrial and Pharmaceutical Proteins, pp. 99–113. Wiley, New York (1996)Google Scholar
  5. 5.
    Gomord, V., Fitchette, A.C., Menu-Bouaouiche, L., Saint-Jore-Dupas, C., Plasson, C., Michaud, D., Faye, L.: Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol. J. 8, 564–587 (2010)CrossRefPubMedGoogle Scholar
  6. 6.
    Lerouge, P., Bardor, M., Pagny, S., Gomord, V., Faye, L.: N-glycosylation of recombinant pharmaceutical glycoproteins produced in transgenic plants: towards an humanisation of plant N-glycans. Curr. Pharm. Biotechnol. 1, 347–354 (2000)CrossRefPubMedGoogle Scholar
  7. 7.
    Palacpac, N.Q., Kimura, Y., Fujiyama, K., Yoshida, T., Seki, T.: Structures of N-linked oligosaccharides of glycoproteins from tobacco BY2 suspension cultured cells. Biosci. Biotechnol. Biochem. 63, 35–39 (1999)CrossRefPubMedGoogle Scholar
  8. 8.
    Fujiyama, K., Furukawa, A., Katsura, A., Misaki, R., Omasa, T., Seki, T.: Production of mouse monoclonal antibody with galactose-extended sugar chain by suspension cultured tobacco BY2 cells expressing human beta(1,4)-galactosyltransferase. Biochem. Biophys. Res. Commun. 358, 85–91 (2007)CrossRefPubMedGoogle Scholar
  9. 9.
    Palacpac, N.Q., Yoshida, S., Sakai, H., Kimura, Y., Fujiyama, K., Yoshida, T., Seki, T.: Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc. Natl. Acad. Sci. U. S. A. 96, 4692–4697 (1999)CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Bakker, H., Bardor, M., Molthoff, J.W., Gomord, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Lerouge, P., Bosch, D.: Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. U. S. A. 98, 2899–2904 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Robert, J.P., Peter, S.L.: CTLA4Ig: a novel immunoglobulin chimera with immunosuppressive properties. Methods 8, 116–123 (1995)CrossRefGoogle Scholar
  12. 12.
    Lee, S.J., Park, C.I., Park, M.Y., Jung, H.S., Ryu, W.S., Lim, S.M., Tan, H.K., Kwon, T.H., Yang, M.S., Kim, D.I.: Production and characterization of human CTLA4Ig expressed in transgenic rice cell suspension cultures. Protein Expr. Purif. 51, 293–302 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    Metzler, W.J., Bajorath, J., Fenderson, W., Shaw, S.Y., Constantine, K.L., Naemura, J., Leytze, G., Peach, R.J., Lavoie, T.B., Mueller, L., Linsley, P.S.: Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat. Struct. Biol. 4, 527–531 (1997)CrossRefPubMedGoogle Scholar
  14. 14.
    Krapp, S., Mimura, Y., Jefferis, R., Huber, R., Sondermann, P.: Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol. 325, 979–989 (2003)CrossRefPubMedGoogle Scholar
  15. 15.
    Deisenhofer, J.: Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry 20, 2361–2370 (1981)CrossRefPubMedGoogle Scholar
  16. 16.
    Matsumiya, S., Yamaguchi, Y., Saito, J., Nagano, M., Sasakawa, H., Otaki, S., Satoh, M., Shitara, K., Kato, K.: Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J. Mol. Biol. 368, 767–779 (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    Mizushima, T., Yagi, H., Takemoto, E., Shibata-Koyama, M., Isoda, Y., Iida, S., Masuda, K., Satoh, M., Kato, K.: Structural basis for improved efficacy of therapeutic antibodies upon defucosylation of their Fc glycans. Genes Cells 16, 1071–1080 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Boyd, P.N., Lines, A.C., Patel, A.K.: The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 32, 1311–1318 (1995)CrossRefPubMedGoogle Scholar
  19. 19.
    Wright, A., Morrison, S.L.: Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15, 26–32 (1997)CrossRefPubMedGoogle Scholar
  20. 20.
    Watzele, G., Berger, E.G.: Near identity of HeLa cell galactosyltransferase with the human placental enzyme. Nucleic Acids Res. 18, 7174 (1990)CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Wise, A.A., Liu, Z., Binns, A.N.: Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol. Biol. 343, 43–53 (2006)PubMedGoogle Scholar
  22. 22.
    Terada, R., Asao, H., Iida, S.: A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Rep. 22, 653–659 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson, J.A., Abdullah, R., Cocking, E.C.: Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Sci. 47, 123–133 (1986)CrossRefGoogle Scholar
  24. 24.
    Nakagawa, H., Kawamura, Y., Kato, K., Shimada, I., Arata, Y., Takahashi, N.: Identification of neutral and sialyl N-linked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Anal. Biochem. 226, 130–138 (1995)CrossRefPubMedGoogle Scholar
  25. 25.
    Takahashi, N., Kato, K.: GALAXY (glycoanalysis by the three axes of MS and chromatography): a web application that assists structural analyses of N-glycans. Trends Glycosci. Glycotechnol. 15, 235–251 (2003)CrossRefGoogle Scholar
  26. 26.
    Hwang, H.S., Kim, B.S., Park, H., Park, H.Y., Choi, H.D., Kim, H.H.: Type and branched pattern of N-glycans and their structural effect on the chicken egg allergen ovotransferrin: a comparison with ovomucoid. Glycoconj. J. 31, 41–50 (2014)CrossRefPubMedGoogle Scholar
  27. 27.
    Jung, H.S., Koo, J.K., Lee, S.J., Park, C.I., Shin, J.Y., Kim, M.H., Tan, H.K., Lim, S.M., Kim, D.I.: Characterization of human cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (hCTLA4Ig) expressed in transgenic rice cell suspension cultures. Biotechnol. Lett. 28, 2039–2048 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    Wilson, I.B., Harthill, J.E., Mullin, N.P., Ashford, D.A., Altmann, F.: Core alpha1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 8, 651–661 (1998)CrossRefPubMedGoogle Scholar
  29. 29.
    Narimatsu, H.: Recent progress in molecular cloning of glycosyltransferase genes of eukaryotes. Microbiol. Immunol. 38, 489–504 (1994)CrossRefPubMedGoogle Scholar
  30. 30.
    Raju, T.S.: Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008)CrossRefPubMedGoogle Scholar
  31. 31.
    Byrne, B., Donohoe, G.G., O’Kennedy, R.: Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov. Today 12, 319–326 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    Fujiyama, K., Palacpac, N.Q., Sakai, H., Kimura, Y., Shinmyo, A., Yoshida, T., Seki, T.: In vivo conversion of a glycan to human compatible type by transformed tobacco cells. Biochem. Biophys. Res. Commun. 289, 553–557 (2001)CrossRefPubMedGoogle Scholar
  33. 33.
    Schähs, M., Strasser, R., Stadlmann, J., Kunert, R., Rademacher, T., Steinkellner, H.: Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol. J. 5, 657–663 (2007)CrossRefPubMedGoogle Scholar
  34. 34.
    Vézina, L.P., Faye, L., Lerouge, P., D’Aoust, M.A., Marquet-Blouin, E., Burel, C., Lavoie, P.O., Bardor, M., Gomord, V.: Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol. J. 7, 442–455 (2009)CrossRefPubMedGoogle Scholar
  35. 35.
    Johnson, K.D., Chrispeels, M.J.: Substrate specificities of N-acetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledons. Plant Physiol. 84, 1301–1308 (1987)CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Chen, M., Liu, X., Wang, Z., Song, J., Qi, Q., Wang, P.G.: Modification of plant N-glycans processing: the future of producing therapeutic protein by transgenic plants. Med. Res. Rev. 25, 343–360 (2005)CrossRefPubMedGoogle Scholar
  37. 37.
    Ko, K., Tekoah, Y., Rudd, P.M., Harvey, D.J., Dwek, R.A., Spitsin, S., Hanlon, C.A., Rupprecht, C., Dietzschold, B., Golovkin, M., Koprowski, H.: Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc. Natl. Acad. Sci. U. S. A. 100, 8013–8018 (2003)CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Dong, X., Storkus, W.J., Salter, R.D.: Binding and uptake of agalactosyl IgG by mannose receptor on macrophages and dendritic cells. J. Immunol. 163, 5427–5434 (1999)PubMedGoogle Scholar
  39. 39.
    Wright, A., Morrison, S.L.: Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J. Immunol. 160, 3393–3402 (1998)PubMedGoogle Scholar
  40. 40.
    Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.C., Gomord, V., Faye, L.: N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38, 31–48 (1998)CrossRefPubMedGoogle Scholar
  41. 41.
    Goetze, A.M., Liu, Y.D., Zhang, Z., Shah, B., Lee, E., Bondarenko, P.V., Flynn, G.C.: High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21, 949–959 (2011)CrossRefPubMedGoogle Scholar
  42. 42.
    Li, H., Sethuraman, N., Stadheim, T.A., Zha, D., Prinz, B., Ballew, N., Bobrowicz, P., Choi, B.K., Cook, W.J., Cukan, M., Houston-Cummings, N.R., Davidson, R., Gong, B., Hamilton, S.R., Hoopes, J.P., Jiang, Y., Kim, N., Mansfield, R., Nett, J.H., Rios, S., Strawbridge, R., Wildt, S., Gerngross, T.U.: Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol. 24, 210–215 (2006)CrossRefPubMedGoogle Scholar
  43. 43.
    Gawlitzek, M., Ryll, T., Lofgren, J., Sliwkowski, M.B.: Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol. Bioeng. 68, 637–646 (2000)CrossRefPubMedGoogle Scholar
  44. 44.
    Becerra-Arteaga, A., Shuler, M.L.: Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase. Biotechnol. Bioeng. 97, 1585–1593 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Seung Hoon Kang
    • 1
  • Hahn Sun Jung
    • 1
  • Song Jae Lee
    • 1
  • Cheon Ik Park
    • 1
  • Sang Min Lim
    • 1
  • Heajin Park
    • 2
  • Byung Sun Kim
    • 2
  • Kwang Heum Na
    • 2
  • Gyeong Jin Han
    • 2
  • Jae Woo Bae
    • 2
  • Hyun Joo Park
    • 2
  • Keuk Chan Bang
    • 2
  • Byung Tae Park
    • 2
  • Hye Seong Hwang
    • 2
  • In-Soo Jung
    • 3
  • Jae Il Kim
    • 4
  • Doo Byung Oh
    • 5
  • Dong Il Kim
    • 6
  • Hirokazu Yagi
    • 7
  • Koichi Kato
    • 7
    • 8
  • Dae Kyong Kim
    • 9
    Email author
  • Ha Hyung Kim
    • 2
    Email author
  1. 1.Boryung Central Research InstituteBoryung Pharmaceutical Co. Ltd.Ansan-siRepublic of Korea
  2. 2.Biotherapeutics and Glycomics Laboratory, College of PharmacyChung-Ang UniversitySeoulRepublic of Korea
  3. 3.College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  4. 4.School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  5. 5.Korea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonRepublic of Korea
  6. 6.Department of Biological EngineeringInha UniversityIncheonRepublic of Korea
  7. 7.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
  8. 8.Okazaki Institute for Integrative Bioscience and Institute for Molecular ScienceNational Institutes of Natural SciencesOkazakiJapan
  9. 9.Department of Environmental & Health Chemistry, College of PharmacyChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations