Advertisement

Glycoconjugate Journal

, Volume 32, Issue 7, pp 443–454 | Cite as

Chemistry-enabled methods for the visualization of cell-surface glycoproteins in Metazoans

  • Kelly N. Chuh
  • Matthew R. PrattEmail author
Original Article

Abstract

The majority of cell-surface and secreted proteins are glycosylated, which can directly affect their macromolecular interactions, stability, and localization. Investigating these effects is critical to developing a complete understanding of the role of glycoproteins in fundamental biology and human disease. The development of selective and unique chemical reactions have revolutionized the visualization, identification, and characterization of glycoproteins. Here, we review the chemical methods that have been created to enable the visualization of the major types of cell-surface glycoproteins in living systems, from mammalian cells to whole animals.

Keywords

Cell-surface glycosylation Chemical reporters Fluorescent visualization 

References

  1. 1.
    Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.): Essentials of Glycobioloy. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2009)Google Scholar
  2. 2.
    Helenius, A., Aebi, M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    Schwarz, F., Aebi, M.: Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011)CrossRefPubMedGoogle Scholar
  4. 4.
    Hang, H.C., Bertozzi, C.R.: The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Med. Chem. 13, 5021–5034 (2005)CrossRefPubMedGoogle Scholar
  5. 5.
    Rana, N.A., Haltiwanger, R.S.: Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol. 21, 583–589 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Grammel, M., Hang, H.C.: Chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475–484 (2013)CrossRefPubMedGoogle Scholar
  7. 7.
    Patterson, D.M., Nazarova, L.A., Prescher, J.A.: Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9, 592–605 (2014)CrossRefPubMedGoogle Scholar
  8. 8.
    Chuh, K.N., Pratt, M.R.: Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr. Opin. Chem. Biol. 24, 27–37 (2015)CrossRefPubMedGoogle Scholar
  9. 9.
    Wei, L., Hu, F., Shen, Y., Chen, Z., Yu, Y., Lin, C.-C., Wang, M.C., Min, W.: Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11, 410–412 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Hong, S., Lin, L., Xiao, M., Chen, X.: Live-cell bioorthogonal Raman imaging. Curr. Opin. Chem. Biol. 24C, 91–96 (2015)CrossRefGoogle Scholar
  11. 11.
    Dirksen, A., Hackeng, T.M., Dawson, P.E.: Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. Engl. 45, 7581–7584 (2006)CrossRefPubMedGoogle Scholar
  12. 12.
    Zeng, Y., Ramya, T.N.C., Dirksen, A., Dawson, P.E., Paulson, J.C.: High-efficiency labeling of sialylated glycoproteins on living cells. Nat. Methods 6, 207–209 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Mahal, L.K., Yarema, K.J., Bertozzi, C.R.: Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997)CrossRefPubMedGoogle Scholar
  14. 14.
    Saxon, E., Bertozzi, C.: Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000)CrossRefPubMedGoogle Scholar
  15. 15.
    Prescher, J., Dube, D., Bertozzi, C.: Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004)CrossRefPubMedGoogle Scholar
  16. 16.
    Hedlund, M., Ng, E., Varki, A., Varki, N.M.: 2-6 linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res. 68, 388–394 (2008)CrossRefPubMedGoogle Scholar
  17. 17.
    Neves, A.A., Stockmann, H., Harmston, R.R., Pryor, H.J., Alam, I.S., Ireland-Zecchini, H., Lewis, D.Y., Lyons, S.K., Leeper, F.J., Brindle, K.M.: Imaging sialylated tumor cell glycans in vivo. FASEB J. 25, 2528–2537 (2011)CrossRefPubMedGoogle Scholar
  18. 18.
    Hangauer, M., Bertozzi, C.: A FRET-based fluorogenic phosphine for live-cell imaging with the Staudinger ligation. Angew. Chem. Int. Ed. 47, 2394–2397 (2008)CrossRefGoogle Scholar
  19. 19.
    Tornøe, C.W., Christensen, C., Meldal, M.: Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B.: A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    Agard, N., Prescher, J., Bertozzi, C.: A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    Jewett, J.C., Bertozzi, C.R.: Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Baskin, J., Prescher, J., Laughlin, S., Agard, N., Chang, P., Miller, I., Lo, A., Codelli, J., Bertozzi, C.: Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104, 16793–16797 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Ning, X., Guo, J., Wolfert, M., Boons, G.: Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew. Chem. Int. Ed. 47, 2253–2255 (2008)CrossRefGoogle Scholar
  25. 25.
    Mbua, N.E., Guo, J., Wolfert, M.A., Steet, R., Boons, G.-J.: Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. ChemBioChem 12, 1912–1921 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Rosenbaum, A.I., Maxfield, F.R.: Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J. Neurochem. 116, 789–795 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Mbua, N.E., Flanagan-Steet, H., Johnson, S., Wolfert, M.A., Boons, G.-J., Steet, R.: Abnormal accumulation and recycling of glycoproteins visualized in Niemann-Pick type C cells using the chemical reporter strategy. Proc. Natl. Acad. Sci. U. S. A. 110, 10207–10212 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Montpetit, M.L., Stocker, P.J., Schwetz, T.A., Harper, J.M., Norring, S.A., Schaffer, L., North, S.J., Jang-Lee, J., Gilmartin, T., Head, S.R., Haslam, S.M., Dell, A., Marth, J.D., Bennett, E.S.: Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proc. Natl. Acad. Sci. U. S. A. 106, 16517–16522 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Rong, J., Han, J., Dong, L., Tan, Y., Yang, H., Feng, L., Wang, Q.-W., Meng, R., Zhao, J., Wang, S.-Q., Chen, X.: Glycan imaging in intact rat hearts and glycoproteomic analysis reveal the upregulation of sialylation during cardiac hypertrophy. J. Am. Chem. Soc. 136, 17468–17476 (2014)CrossRefPubMedGoogle Scholar
  30. 30.
    Möller, H., Böhrsch, V., Bentrop, J., Bender, J., Hinderlich, S., Hackenberger, C.P.R.: Glycan-specific metabolic oligosaccharide engineering of C7-substituted sialic acids. Angew. Chem. Int. Ed. 51, 5986–5990 (2012)CrossRefGoogle Scholar
  31. 31.
    Sletten, E.M., Bertozzi, C.R.: A hydrophilic azacyclooctyne for Cu-free click chemistry. Org. Lett. 10, 3097–3099 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Jewett, J.C., Sletten, E.M., Bertozzi, C.R.: Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 132, 3688–3690 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Jewett, J.C., Bertozzi, C.R.: Synthesis of a fluorogenic cyclooctyne activated by Cu-Free click chemistry. Org. Lett. 13, 5937–5939 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Friscourt, F., Ledin, P.A., Mbua, N.E., Flanagan-Steet, H.R., Wolfert, M.A., Steet, R., Boons, G.-J.: Polar dibenzocyclooctynes for selective labeling of extracellular glycoconjugates of living cells. J. Am. Chem. Soc. 134, 5381–5389 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Hsu, T.-L., Hanson, S.R., Kishikawa, K., Wang, S.-K., Sawa, M., Wong, C.-H.: Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc. Natl. Acad. Sci. U. S. A. 104, 2614–2619 (2007)PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W.: Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001)CrossRefPubMedGoogle Scholar
  37. 37.
    Luchansky, S.J., Goon, S., Bertozzi, C.R.: Expanding the diversity of unnatural cell-surface sialic acids. ChemBioChem 5, 371–374 (2004)CrossRefPubMedGoogle Scholar
  38. 38.
    Feng, L., Hong, S., Rong, J., You, Q., Dai, P., Huang, R., Tan, Y., Hong, W., Xie, C., Zhao, J., Chen, X.: Bifunctional unnatural sialic acids for dual metabolic labeling of cell-surface sialylated glycans. J. Am. Chem. Soc. 135, 9244–9247 (2013)CrossRefPubMedGoogle Scholar
  39. 39.
    Tanaka, Y., Kohler, J.: Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008)CrossRefPubMedGoogle Scholar
  40. 40.
    Devaraj, N., Upadhyay, R., Haun, J., Hilderbrand, S., Weissleder, R.: Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew. Chem. Int. Ed. Engl. 48, 7013–7016 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Yang, J., Šečkutė, J., Cole, C.M., Devaraj, N.K.: Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. Angew. Chem. Int. Ed. Engl. 51, 7476–7479 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Patterson, D.M., Nazarova, L.A., Xie, B., Kamber, D.N., Prescher, J.A.: Functionalized cyclopropenes as bioorthogonal chemical reporters. J. Am. Chem. Soc. 134, 18638–18643 (2012)CrossRefPubMedGoogle Scholar
  43. 43.
    Cole, C.M., Yang, J., Šečkutė, J., Devaraj, N.K.: Fluorescent live-cell imaging of metabolically incorporated unnatural cyclopropene-mannosamine derivatives. ChemBioChem 14, 205–208 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Patterson, D.M., Jones, K.A., Prescher, J.A.: Improved cyclopropene reporters for probing protein glycosylation. Mol. BioSyst. 10, 1693 (2014)CrossRefPubMedGoogle Scholar
  45. 45.
    Niederwieser, A., Späte, A.-K., Nguyen, L.D., Jüngst, C., Reutter, W., Wittmann, V.: Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry. Angew. Chem. Int. Ed. 52, 4265–4268 (2013)CrossRefGoogle Scholar
  46. 46.
    Späte, A.-K., Bußkamp, H., Niederwieser, A., Schart, V.F., Marx, A., Wittmann, V.: Rapid labeling of metabolically engineered cell-surface glycoconjugates with a carbamate-linked cyclopropene reporter. Bioconjug. Chem. 25, 147–154 (2014)CrossRefPubMedGoogle Scholar
  47. 47.
    Chang, P.V., Dube, D.H., Sletten, E.M., Bertozzi, C.R.: A strategy for the selective imaging of glycans using caged metabolic precursors. J. Am. Chem. Soc. 132, 9516–9518 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Xie, R., Hong, S., Feng, L., Rong, J., Chen, X.: Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J. Am. Chem. Soc. 134, 9914–9917 (2012)CrossRefPubMedGoogle Scholar
  49. 49.
    Xie, R., Dong, L., Huang, R., Hong, S., Lei, R., Chen, X.: Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angew. Chem. Int. Ed. 53, 14082–14086 (2014)CrossRefGoogle Scholar
  50. 50.
    Haga, Y., Ishii, K., Hibino, K., Sako, Y., Ito, Y., Taniguchi, N., Suzuki, T.: Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nat. Commun. 3, 907 (2012)CrossRefPubMedGoogle Scholar
  51. 51.
    Brock, R., Hamelers, I.H., Jovin, T.M.: Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry 35, 353–362 (1999)CrossRefPubMedGoogle Scholar
  52. 52.
    Lin, W., Du, Y., Zhu, Y., Chen, X.: A cis-membrane FRET-based method for protein-specific imaging of cell-surface glycans. J. Am. Chem. Soc. 136, 679–687 (2014)CrossRefPubMedGoogle Scholar
  53. 53.
    Belardi, B., de la Zerda, A., Spiciarich, D.R., Maund, S.L., Peehl, D.M., Bertozzi, C.R.: Imaging the glycosylation state of cell surface glycoproteins by two-photon fluorescence lifetime imaging microscopy. Angew. Chem. Int. Ed. Engl. 52, 14045–14049 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Han, S., Collins, B.E., Bengtson, P., Paulson, J.C.: Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 1, 93–97 (2005)CrossRefPubMedGoogle Scholar
  55. 55.
    Wu, X., Tian, Y., Yu, M., Lin, B., Han, J., Han, S.: A fluorescently labelled sialic acid for high performance intraoperative tumor detection. Biomater. Sci. 2, 1120 (2014)CrossRefGoogle Scholar
  56. 56.
    Wu, X., Yu, M., Lin, B., Xing, H., Han, J., Han, S.: A sialic acid-targeted near-infrared theranostic for signal activation based intraoperative tumor ablation. Chem. Sci. 6, 798–803 (2014)CrossRefGoogle Scholar
  57. 57.
    Mbua, N.E., Li, X., Flanagan-Steet, H.R., Meng, L., Aoki, K., Moremen, K.W., Wolfert, M.A., Steet, R., Boons, G.-J.: Selective exo-enzymatic labeling of N-glycans on the surface of living cells by recombinant ST6Gal I. Angew. Chem. Int. Ed. Engl. 52, 13012–13015 (2013)CrossRefPubMedGoogle Scholar
  58. 58.
    Lin, L., Tian, X., Hong, S., Dai, P., You, Q., Wang, R., Feng, L., Xie, C., Tian, Z.-Q., Chen, X.: A bioorthogonal Raman reporter strategy for SERS detection of glycans on live cells. Angew. Chem. Int. Ed. Engl. 52, 7266–7271 (2013)CrossRefPubMedGoogle Scholar
  59. 59.
    Hong, S., Chen, T., Zhu, Y., Li, A., Huang, Y., Chen, X.: Live-cell stimulated raman scattering imaging of alkyne-tagged biomolecules. Angew. Chem. Int. Ed. 53, 5827–5831 (2014)CrossRefGoogle Scholar
  60. 60.
    Hang, H.C., Yu, C., Kato, D.L., Bertozzi, C.R.: A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc. Natl. Acad. Sci. U. S. A. 100, 14846–14851 (2003)PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Dube, D., Prescher, J., Quang, C., Bertozzi, C.: Probing mucin-type O-linked glycosylation in living animals. Proc. Natl. Acad. Sci. U. S. A. 103, 4819–4824 (2006)PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Laughlin, S., Baskin, J., Amacher, S., Bertozzi, C.: In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Laughlin, S.T., Bertozzi, C.R.: In vivo imaging of caenorhabditis elegans glycans. ACS Chem. Biol. 4, 1068–1072 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Becker, D., Lowe, J.: Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R (2003)CrossRefPubMedGoogle Scholar
  65. 65.
    Sawa, M., Hsu, T.-L., Itoh, T., Sugiyama, M., Hanson, S.R., Vogt, P.K., Wong, C.-H.: Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. U. S. A. 103, 12371–12376 (2006)PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Rabuka, D., Hubbard, S., Laughlin, S., Argade, S., Bertozzi, C.: A chemical reporter strategy to probe glycoprotein fucosylation. J. Am. Chem. Soc. 128, 12078–12079 (2006)PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Soriano Del Amo, D., Wang, W., Jiang, H., Besanceney, C., Yan, A.C., Levy, M., Liu, Y., Marlow, F.L., Wu, P.: Biocompatible copper(I) catalysts for in vivo imaging of glycans. J. Am. Chem. Soc. 132, 16893–16899 (2010)CrossRefPubMedGoogle Scholar
  68. 68.
    Dehnert, K.W., Baskin, J.M., Laughlin, S.T., Beahm, B.J., Naidu, N.N., Amacher, S.L., Bertozzi, C.R.: Imaging the sialome during zebrafish development with copper-free click chemistry. ChemBioChem 13, 353–357 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Jiang, H., Zheng, T., Lopez-Aguilar, A., Feng, L., Kopp, F., Marlow, F.L., Wu, P.: Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug. Chem. 25, 698–706 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Uttamapinant, C., Tangpeerachaikul, A., Grecian, S., Clarke, S., Singh, U., Slade, P., Gee, K.R., Ting, A.Y.: Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew. Chem. Int. Ed. 51, 5852–5856 (2012)CrossRefGoogle Scholar
  71. 71.
    Zheng, T., Jiang, H., Gros, M., Soriano Del Amo, D., Sundaram, S., Lauvau, G., Marlow, F., Liu, Y., Stanley, P., Wu, P.: Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew. Chem. Int. Ed. Engl. 50, 4113–4118 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Chaubard, J.-L., Krishnamurthy, C., Yi, W., Smith, D.F., Hsieh-Wilson, L.C.: Chemoenzymatic probes for detecting and imaging fucose-α(1-2)-galactose glycan biomarkers. J. Am. Chem. Soc. 134, 4489–4492 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Boyce, M., Carrico, I.S., Ganguli, A.S., Yu, S.-H., Hangauer, M.J., Hubbard, S.C., Kohler, J.J., Bertozzi, C.R.: Metabolic cross-talk allows labeling of O-linked {beta}-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc. Natl. Acad. Sci. U. S. A. 108, 3141–3146 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Zaro, B.W., Yang, Y.-Y., Hang, H.C., Pratt, M.R.: Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc. Natl. Acad. Sci. U. S. A. 108, 8146–8151 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Bateman, L.A., Zaro, B.W., Chuh, K.N., Pratt, M.R.: N-propargyloxycarbamate monosaccharides as metabolic chemical reporters of carbohydrate salvage pathways and protein glycosylation. Chem. Commun. 49, 4328–4330 (2013)CrossRefGoogle Scholar
  76. 76.
    Chuh, K.N., Zaro, B.W., Piller, F., Piller, V., Pratt, M.R.: Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. J. Am. Chem. Soc. 136, 12283–12295 (2014)PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Vainauskas, S., Cortes, L.K., Taron, C.H.: In vivo incorporation of an azide-labeled sugar analog to detect mammalian glycosylphosphatidylinositol molecules isolated from the cell surface. Carbohydr. Res. 362, 62–69 (2012)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations