Glycoconjugate Journal

, Volume 32, Issue 3–4, pp 153–159 | Cite as

Pectin from Prunus domestica L. induces proliferation of IEC-6 cells through the alteration of cell-surface heparan sulfate on differentiated Caco-2 cells in co-culture

  • Mitsutaka Nishida
  • Kazuma Murata
  • Kazuya Oshima
  • Chihiro Itoh
  • Kohji Kitaguchi
  • Yoshihiro Kanamaru
  • Tomio YabeEmail author
Original Article


Dietary fiber intake provides various physiological and metabolic effects for human health. Pectin, a water-soluble dietary fiber, induces morphological changes of the small intestine in vivo. However, the molecular mechanisms underlying pectin-derived morphological alterations have not been elucidated. Previously, we found that pectin purified from Prunus domestica L. altered the sulfated structure of cell-surface heparan sulfate (HS) on differentiated Caco-2 cells via fibronectin and α5β1 integrin. In this study, we investigated the biological significance of the effect of pectin on HS in differentiated Caco-2 cells. An in vitro intestinal epithelium model was constructed by co-culture of differentiated Caco-2 cells and rat IEC-6 cells, which were used as models of intestinal epithelium and intestinal crypt cells, respectively. We found that pectin-treated differentiated Caco-2 cells promoted growth of IEC-6 cells. Real-time RT-PCR analysis and western blotting showed that relative mRNA and protein expression levels of Wnt3a were upregulated by pectin treatment in differentiated Caco-2 cells. Analysis by surface plasmon resonance spectroscopy demonstrated that pectin-induced structural alteration of HS markedly decreased the interaction with Wnt3a. However, depression in the secretion of Wnt3a from Caco-2 cells by anti-Wnt3a antibody did not affect the proliferation of IEC-6 cells in co-culture system. These observations indicated that pectin altered the sulfated structure of cell-surface HS to promote secretion of Wnt3a from differentiated Caco-2 cells and Wnt3a indirectly stimulated the proliferation of IEC-6 cells.


Differentiated Caco-2 cell Heparan sulfate IEC-6 cell Pectin Wnt3a 



Bovine serum albumin


Fetal bovine serum


Heparan sulfate


Human HS 6-O-endosulfatase-2


Quail HS 6-O-endosulfatase-1



We thank the members of the Division of Genomics Research, Life Science Research Center, Gifu University, for their support in conducting the experiments and thank Miki Corporation (Hyogo, Japan) for providing the concentrated prune juice. This work was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (C) Grant Number 23580163.


  1. 1.
    Anderson, J.W., Baird, P., Davis Jr., R.H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., Williams, C.L.: Health benefits of dietary fiber. Nutr. Rev. 67, 188–205 (2009)CrossRefPubMedGoogle Scholar
  2. 2.
    Brown, L., Rosner, B., Willett, W.W., Sacks, F.M.: Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am. J. Clin. Nutr. 69, 30–42 (1999)PubMedGoogle Scholar
  3. 3.
    Tasman-Jones, C., Owen, R.L., Jones, A.L.: Semipurified dietary fiber and small-bowel morphology in rats. Dig. Dis. Sci. 27, 519–524 (1982)CrossRefPubMedGoogle Scholar
  4. 4.
    McCullogh, J.S., Ratcliffe, B., Mandir, N., Carr, K.E., Goodlad, R.A.: Dietary fibre and intestinal microflora: effects on intestinal morphometry and crypt branching. Gut 42, 799–806 (1998)CrossRefPubMedGoogle Scholar
  5. 5.
    Langhout, D.J., Schutte, J.B., van Leeuwen, P., Wiebenga, J., Tamminga, S.: Effect of dietary high- and low-methylated citrus pectin on the activity of the ileal microflora and morphology of the small intestinal wall of broiler chicks. Br. Poult. Sci. 40, 340–347 (1999)CrossRefPubMedGoogle Scholar
  6. 6.
    Babyatsky, M.W., Podolsky, D.K.: Growth and development of the gastrointestinal tract. In: Yamada, T. (ed.) Textbook of gastroenterology, pp. 547–584. Lippincott Williams & Willkins, Philadelphia (1999)Google Scholar
  7. 7.
    Crosnier, C., Stamataki, D., Lewis, J.: Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    Yamamoto, S., Nakase, H., Matsuura, M., Honzawa, Y., Matsumura, K., Uza, N., Yamaguchi, Y., Mizoguchi, E., Chiba, T.: Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/β-catenin signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G241–G249 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Habuchi, O.: Diversity and functions of glycosaminoglycan sulfotransferases. Biochim. Biophys. Acta 1474, 115–127 (2000)CrossRefPubMedGoogle Scholar
  10. 10.
    Lamanna, W.C., Frese, M.A., Balleininger, M., Dierks, T.: Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J. Biol. Chem. 283, 27724–27735 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    Frese, M.A., Milz, F., Dick, M., Lamanna, W.C., Dierks, T.: Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain. J. Biol. Chem. 284, 28033–28044 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Bernfield, M., Götte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., Zako, M.: Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999)CrossRefPubMedGoogle Scholar
  13. 13.
    Bishop, J.R., Schuksz, M., Esko, J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    Nishida, M., Murata, K., Kanamaru, Y., Yabe, T.: Pectin of Prunus domestica L. alters sulfated structure of cell-surface heparan sulfate in differentiated Caco-2 cells through stimulation of heparan sulfate 6-O-endosulfatase-2. Biosci. Biotechnol. Biochem. 78, 635–643 (2014)CrossRefPubMedGoogle Scholar
  15. 15.
    Ai, X., Do, A.T., Lozynska, O., Kusche-Gullberg, M., Lindahl, U., Emerson Jr., C.P.: QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J. Cell Biol. 162, 341–351 (2003)CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Liu, L., Rao, J.N., Zou, T., Xiao, L., Smith, A., Zhuang, R., Turner, D.J., Wang, J.Y.: Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. Am. J. Physiol. Cell Physiol. 302, C277–C285 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Ouko, L., Ziegler, T.R., Gu, L.H., Eisenberg, L.M., Yang, V.W.: Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J. Biol. Chem. 279, 26707–26715 (2004)CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Gross, J.C., Chaudhary, V., Bartscherer, K., Boutros, M.: Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012)CrossRefPubMedGoogle Scholar
  19. 19.
    Witze, E.S., Litman, E.S., Argast, G.M., Moon, R.T., Ahn, N.G.: Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 320, 365–369 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Mertens, G., van der Schueren, B., van den Berghe, H., David, G.: Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J. Cell Biol. 132, 487–497 (1996)CrossRefPubMedGoogle Scholar
  21. 21.
    Simon-Assmann, P., Bouziges, F., Vigny, M., Kedinger, M.: Origin and deposition of basement membrane heparan sulfate proteoglycan in the developing intestine. J. Cell Biol. 109, 1837–1848 (1989)CrossRefPubMedGoogle Scholar
  22. 22.
    Fuerer, C., Habib, S.J., Nusse, R.: A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev. Dyn. 239, 184–190 (2010)PubMedCentralPubMedGoogle Scholar
  23. 23.
    Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates III, J.R., Nusse, R.: Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Sato, T., van Es, J.H., Snippert, H.J., Stange, D.E., Vries, R.G., van den Born, M., Barker, N., Shroyer, N.F., van de Wetering, M., Clevers, H.: Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011)CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mitsutaka Nishida
    • 1
  • Kazuma Murata
    • 2
  • Kazuya Oshima
    • 2
  • Chihiro Itoh
    • 2
  • Kohji Kitaguchi
    • 1
    • 2
  • Yoshihiro Kanamaru
    • 1
    • 2
  • Tomio Yabe
    • 1
    • 2
    Email author
  1. 1.United Graduate School of Agricultural ScienceGifu UniversityGifuJapan
  2. 2.Department of Applied Life Science, Faculty of Applied Biological SciencesGifu UniversityGifuJapan

Personalised recommendations