Glycoconjugate Journal

, Volume 32, Issue 3–4, pp 105–112 | Cite as

Structural and dynamic views of GM1 ganglioside

  • Maho Yagi-Utsumi
  • Koichi KatoEmail author


The ganglioside GM1 mediates various physiological and pathological processes mainly through the formation of GM1 clusters on cell surfaces. Therefore, detailed characterization of conformational properties of the glycan moiety of GM1 and the structures and interactions of this glycosphingolipid in membrane environments is necessary for better understanding of the clustering-coupled functional promotion. Nuclear magnetic resonance (NMR) spectroscopy has provided conformational information of GM1 in solution as well as in membrane-like environments. Recently, sophisticated paramagnetism-assisted NMR approaches combined with molecular dynamics simulations have enabled the quantitative exploration of conformational spaces of a series of gangliosides, including GM1, taking into account their minor conformations. NMR techniques have also been successfully applied to investigations of the dynamic interactions of GM1 clusters with amyloidogenic proteins such as amyloid β and α-synuclein associated with neurodegenerative disorders. Further integration of experimental and computational approaches will open up new possibilities to provide structural views of the more complicated heterogeneous systems exemplified by microdomains involving GM1.


Ganglioside GM1 Nuclear magnetic resonance spectroscopy Molecular dynamics simulation Amyloid β α-synuclein Bicelle 


amyloid β-peptide










determined in dimethyl-d 6 -sulfoxide




molecular dynamics


nuclear magnetic resonance


nuclear Overhauser effects


pseudocontact shift


paramagnetic relaxation enhancement


replica-exchange molecular dynamics







This study was partly supported by a JSPS/MEXT KAKENHI Grant-in-Aid for Scientific Research on Innovation Areas (25102001 and 25102008), Grant-in-Aid for Challenging Exploratory Research (26560451), Research Funding for Longevity Sciences (25–19) from the National Center for Geriatrics and Gerontology, the Nanotechnology Platform Program of MEXT, and the Okazaki ORION project. We thank Drs. Hisashi Okumura, Satoru G. Itoh, and Takumi Yamaguchi for the useful discussion.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Thudichum, J.L.W.: A treatise on the chemical constitution of the brain. Baillière, Tindall & Cox, London (1884)Google Scholar
  2. 2.
    Regina Todeschini, A., Hakomori, S.I.: Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780(3), 421–433 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    Kopitz, J., von Reitzenstein, C., Burchert, M., Cantz, M., Gabius, H.J.: Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273(18), 11205–11211 (1998)CrossRefPubMedGoogle Scholar
  4. 4.
    Ichikawa, N., Iwabuchi, K., Kurihara, H., Ishii, K., Kobayashi, T., Sasaki, T., Hattori, N., Mizuno, Y., Hozumi, K., Yamada, Y., Arikawa-Hirasawa, E.: Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci 122(Pt 2), 289–299 (2009). doi: 10.1242/jcs.030338 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Holmgren, J., Lonnroth, I., Mansson, J., Svennerholm, L.: Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc Natl Acad Sci U S A 72(7), 2520–2524 (1975)CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Yuki, N.: Carbohydrate mimicry: a new paradigm of autoimmune diseases. Curr Opin Immunol 17(6), 577–582 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuzaki, K., Kato, K., Yanagisawa, K.: Ab polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 1801(8), 868–877 (2010). doi: 10.1016/j.bbalip.2010.01.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Ariga, T., McDonald, M.P., Yu, R.K.: Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease–a review. J Lipid Res 49(6), 1157–1175 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Scarsdale, J.N., Prestegard, J.H., Yu, R.K.: NMR and computational studies of interactions between remote residues in gangliosides. Biochemistry 29(42), 9843–9855 (1990)CrossRefPubMedGoogle Scholar
  10. 10.
    Acquotti, D., Poppe, L., Dabrowski, J., Wilhelm Von der Lieth, C., Sonnino, S., Tettamanti, G.: Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dodecylphosphocholine solutions. J Am Chem Soc 112(21), 7772–7778 (1990)CrossRefGoogle Scholar
  11. 11.
    Brocca, P., Bernardi, A., Raimondi, L., Sonnino, S.: Modeling ganglioside headgroups by conformational analysis and molecular dynamics. Glycoconj J 17(5), 283–299 (2000)CrossRefPubMedGoogle Scholar
  12. 12.
    Brocca, P., Berthault, P., Sonnino, S.: Conformation of the oligosaccharide chain of GM1 ganglioside in a carbohydrate-enriched surface. Biophys J 74(1), 309–318 (1998)CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Yagi-Utsumi, M., Kameda, T., Yamaguchi, Y., Kato, K.: NMR characterization of the interactions between lyso-GM1 aqueous micelles and amyloid b. FEBS Lett 584(4), 831–836 (2010)CrossRefPubMedGoogle Scholar
  14. 14.
    Sillerud, L.O., Yu, R.K., Schafer, D.E.: Assignment of the carbon-13 nuclear magnetic resonance spectra of gangliosides GM4, GM3, GM2, GM1, GD1a, GD1b, and GT1b. Biochemistry 21(6), 1260–1271 (1982)CrossRefPubMedGoogle Scholar
  15. 15.
    Koerner Jr., T.A., Prestegard, J.H., Demou, P.C., Yu, R.K.: High-resolution proton NMR studies of gangliosides. 1. Use of homonuclear two-dimensional spin-echo J-correlated spectroscopy for determination of residue composition and anomeric configurations. Biochemistry 22(11), 2676–2687 (1983)CrossRefPubMedGoogle Scholar
  16. 16.
    Neu, U., Woellner, K., Gauglitz, G., Stehle, T.: Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci U S A 105(13), 5219–5224 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Ng, N.M., Littler, D.R., Paton, A.W., Le Nours, J., Rossjohn, J., Paton, J.C., Beddoe, T.: EcxAB is a founding member of a new family of metalloprotease AB5 toxins with a hybrid cholera-like B subunit. Structure 21(11), 2003–2013 (2013). doi: 10.1016/j.str.2013.08.024 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang, Y., Yamaguchi, T., Kato, K.: New NMR tools for characterizing the fynamic conformations and interacctions of oligosaccharides. Chem Lett 42(12), 1455–1462 (2013)CrossRefGoogle Scholar
  19. 19.
    Yamaguchi, Y., Yamaguchi, T., Kato, K.: Structural analysis of oligosaccharides and glycoconjugates using NMR. Adv Neurobiol 9, 165–183 (2014). doi: 10.1007/978-1-4939-1154-7_8 CrossRefPubMedGoogle Scholar
  20. 20.
    Yamaguchi, T., Kato, K.: Paramagnetism-assisted nuclear magnetic resonance analysis of dynamic conformations and interactions of oligosaccharides. Glycosci Biol Med 1, 137–145 (2014). doi: 10.1007/978-4-431-54841-6_101 Google Scholar
  21. 21.
    Erdélyi, M., d’Auvergne, E., Navarro-Vázquez, A., Leonov, A., Griesinger, C.: Dynamics of the glycosidic bond: conformational space of lactose. Chemistry 17(34), 9368–9376 (2011). doi: 10.1002/chem.201100854 CrossRefPubMedGoogle Scholar
  22. 22.
    Canales, A., Mallagaray, A., Pérez-Castells, J., Boos, I., Unverzagt, C., André, S., Gabius, H.J., Cañada, F.J., Jiménez-Barbero, J.: Breaking pseudo-symmetry in multiantennary complex N-glycans using lanthanide-binding tags and NMR pseudo-contact shifts. Angew Chem Int Ed Engl 52(51), 13789–13793 (2013). doi: 10.1002/anie.201307845 CrossRefPubMedGoogle Scholar
  23. 23.
    Yamamoto, S., Zhang, Y., Yamaguchi, T., Kameda, T., Kato, K.: Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem Commun (Camb) 48(39), 4752–4754 (2012). doi: 10.1039/c2cc30353a CrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Yamamoto, S., Yamaguchi, T., Kato, K.: Application of paramagnetic NMR-validated molecular dynamics simulation to the analysis of a conformational ensemble of a branched oligosaccharide. Molecules 17(6), 6658–6671 (2012). doi: 10.3390/molecules17066658 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang, Y., Yamaguchi, T., Satoh, T., Yagi-Utsumi, M., Kamiya, Y., Sakae, Y., Okamoto, Y., Kato, K.: Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation. Adv Exp Med Biol 842, 217–230 (2015). doi: 10.1007/978-3-319-11280-0_14 CrossRefPubMedGoogle Scholar
  26. 26.
    Poppe, L., van Halbeek, H., Acquotti, D., Sonnino, S.: Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophys J 66(5), 1642–1652 (1994). doi: 10.1016/S0006-3495(94)80956-7 CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Patel, R.Y., Balaji, P.V.: Characterization of the conformational and orientational dynamics of ganglioside GM1 in a dipalmitoylphosphatidylcholine bilayer by molecular dynamics simulations. Biochim Biophys Acta 1768(6), 1628–1640 (2007). doi: 10.1016/j.bbamem.2007.02.020 CrossRefPubMedGoogle Scholar
  28. 28.
    Demarco, M.L., Woods, R.J., Prestegard, J.H., Tian, F.: Presentation of membrane-anchored glycosphingolipids determined from molecular dynamics simulations and NMR paramagnetic relaxation rate enhancement. J Am Chem Soc 132(4), 1334–1338 (2010). doi: 10.1021/ja907518x CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Utsumi, M., Yamaguchi, Y., Sasakawa, H., Yamamoto, N., Yanagisawa, K., Kato, K.: Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj J 26(8), 999–1006 (2009). doi: 10.1007/s10719-008-9216-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Yagi-Utsumi, M., Matsuo, K., Yanagisawa, K., Gekko, K., Kato, K.: Spectroscopic characterization of intermolecular interaction of amyloid β promoted on GM1 micelles. Int J Alzheimers Dis 2011, 925073 (2010). doi: 10.4061/2011/925073 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Khatun, U.L., Goswami, S.K., Mukhopadhyay, C.: Modulation of the neurotensin solution structure in the presence of ganglioside GM1 bicelle. Biophys Chem 168–169, 48–59 (2012). doi: 10.1016/j.bpc.2012.06.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Khatun, U.L., Gayen, A., Mukhopadhyay, C.: Capability of ganglioside GM1 in modulating interactions, structure, location and dynamics of peptides/proteins: biophysical approaches: interaction of ganglioside GM1 with peptides/proteins. Glycoconj J 31(6–7), 435–447 (2014). doi: 10.1007/s10719-014-9554-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Yamaguchi, T., Uno, T., Uekusa, Y., Yagi-Utsumi, M., Kato, K.: Ganglioside-embedding small bicelles for probing membrane-landing processes of intrinsically disordered proteins. Chem Commun (Camb) 49(12), 1235–1237 (2013). doi: 10.1039/c2cc38016a CrossRefGoogle Scholar
  34. 34.
    Ulmer, T.S., Bax, A., Cole, N.B., Nussbaum, R.L.: Structure and dynamics of micelle-bound human a-synuclein. J Biol Chem 280(10), 9595–9603 (2005). doi: 10.1074/jbc.M411805200 CrossRefPubMedGoogle Scholar
  35. 35.
    Bodner, C.R., Dobson, C.M., Bax, A.: Multiple tight phospholipid-binding modes of a-synuclein revealed by solution NMR spectroscopy. J Mol Biol 390(4), 775–790 (2009). doi: 10.1016/j.jmb.2009.05.066 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Bodner, C.R., Maltsev, A.S., Dobson, C.M., Bax, A.: Differential phospholipid binding of a-synuclein variants implicated in Parkinson’s disease revealed by solution NMR spectroscopy. Biochemistry 49(5), 862–871 (2010). doi: 10.1021/bi901723p CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Bartels, T., Ahlstrom, L.S., Leftin, A., Kamp, F., Haass, C., Brown, M.F., Beyer, K.: The N-terminus of the intrinsically disordered protein a-synuclein triggers membrane binding and helix folding. Biophys J 99(7), 2116–2124 (2010). doi: 10.1016/j.bpj.2010.06.035 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Mao, Y., Shang, Z., Imai, Y., Hoshino, T., Tero, R., Tanaka, M., Yamamoto, N., Yanagisawa, K., Urisu, T.: Surface-induced phase separation of a sphingomyelin/cholesterol/ganglioside GM1-planar bilayer on mica surfaces and microdomain molecular conformation that accelerates Ab oligomerization. Biochim Biophys Acta 1798(6), 1090–1099 (2010). doi: 10.1016/j.bbamem.2010.03.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Vyas, K.A., Patel, H.V., Vyas, A.A., Schnaar, R.L.: Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem 382(2), 241–250 (2001). doi: 10.1515/BC.2001.031 CrossRefPubMedGoogle Scholar
  40. 40.
    Lozano, M.M., Liu, Z., Sunnick, E., Janshoff, A., Kumar, K., Boxer, S.G.: Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry. J Am Chem Soc 135(15), 5620–5630 (2013). doi: 10.1021/ja310831m CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Michel, V., Bakovic, M.: Lipid rafts in health and disease. Biol Cell Auspices Eur Cell Biol Organ 99(3), 129–140 (2007). doi: 10.1042/BC20060051 Google Scholar
  42. 42.
    Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., Matsuzaki, K.: Interactions of amyloid b-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41(23), 7385–7390 (2002)CrossRefPubMedGoogle Scholar
  43. 43.
    Hoshino, T., Mahmood, M.I., Mori, K., Matsuzaki, K.: Binding and aggregation mechanism of amyloid b-peptides onto the GM1 ganglioside-containing lipid membrane. J Phys Chem B 117(27), 8085–8094 (2013). doi: 10.1021/jp4029062 CrossRefPubMedGoogle Scholar
  44. 44.
    Fantini, J., Yahi, N., Garmy, N.: Cholesterol accelerates the binding of Alzheimer’s b-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol 4, 120 (2013). doi: 10.3389/fphys.2013.00120 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Fantini, J., Yahi, N.: Molecular basis for the glycosphingolipid-binding specificity of a-synuclein: key role of tyrosine 39 in membrane insertion. J Mol Biol 408(4), 654–669 (2011). doi: 10.1016/j.jmb.2011.03.009 CrossRefPubMedGoogle Scholar
  46. 46.
    Botto, L., Cunati, D., Coco, S., Sesana, S., Bulbarelli, A., Biasini, E., Colombo, L., Negro, A., Chiesa, R., Masserini, M., Palestini, P.: Role of lipid rafts and GM1 in the segregation and processing of prion protein. PLoS One 9(5), e98344 (2014). doi: 10.1371/journal.pone.0098344 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Mori, K., Mahmood, M.I., Neya, S., Matsuzaki, K., Hoshino, T.: Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. J Phys Chem B 116(17), 5111–5121 (2012). doi: 10.1021/jp207881k CrossRefPubMedGoogle Scholar
  48. 48.
    Sonnino, S., Chigorno, V.: Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469(2), 63–77 (2000)CrossRefPubMedGoogle Scholar
  49. 49.
    Sonnino, S., Prinetti, A., Nakayama, H., Yangida, M., Ogawa, H., Iwabuchi, K.: Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J 26(6), 615–621 (2009). doi: 10.1007/s10719-008-9215-8 CrossRefPubMedGoogle Scholar
  50. 50.
    Sugiura, Y., Shimma, S., Konishi, Y., Yamada, M.K., Setou, M.: Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 3(9), e3232 (2008). doi: 10.1371/journal.pone.0003232 CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Yasuda, T., Kinoshita, M., Murata, M., Matsumori, N.: Detailed comparison of deuterium quadrupole profiles between sphingomyelin and phosphatidylcholine bilayers. Biophys J 106(3), 631–638 (2014). doi: 10.1016/j.bpj.2013.12.034 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Molecular Science and Okazaki Institute for Integrative BioscienceNational Institutes of Natural SciencesOkazakiJapan
  2. 2.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
  3. 3.The Glycoscience InstituteOchanomizu UniversityTokyoJapan

Personalised recommendations