Skip to main content
Log in

Glycan microarrays of fluorescently-tagged natural glycans

  • Glycoarray Section
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

This review discusses the challenges facing research in ‘functional glycomics’ and the novel technologies that are being developed to advance the field. The structural complexity of glycans and glycoconjugates makes studies of both their structures and recognition difficult. However, these intricate structures can be captured from their natural sources, isolated and fluorescently-tagged for detailed structural analysis and for presentation on glycan microarrays for functional recognition by glycan-binding proteins. These advances in glycan preparation and manipulation enable the streamlining of functional glycomics studies and will help to propel the field forward in studying natural, biologically relevant glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cummings, R.D., Pierce, J.M.: The challenge and promise of glycomics. Chem. Biol. (Oxford, U K) 21(1), 1–15 (2014)

    CAS  Google Scholar 

  2. Paulson, J.C., Blixt, O., Collins, B.E.: Sweet spots in functional glycomics. Nat. Chem. Biol. 2(5), 238–248 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Smith, D.F., Cummings, R.D.: Application of microarrays for deciphering the structure and function of the human glycome. Mol. Cell. Proteomics 12(4), 902–912 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Taniguchi, N., Hancock, W., Lubman, D.M., Rudd, P.M.: The second golden Age of glycomics: from functional glycomics to clinical applications. J. Proteome Res. 8(2), 425–426 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Cummings, R.D.: The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5(10), 1087–1104 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Gahoi, N., Ray, S., Srivastava, S.: Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges. Proteomics 15(2–3), 218–231 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Marino, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6(10), 713–723 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Zaia, J.: Mass spectrometry and glycomics. OMICS 14(4), 401–418 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jensen, P.H., Karlsson, N.G., Kolarich, D., Packer, N.H.: Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Lundborg, M., Widmalm, G.: Structural analysis of glycans by NMR chemical shift prediction. Anal. Chem. 83(5), 1514–1517 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. North, S.J., Hitchen, P.G., Haslam, S.M., Dell, A.: Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19(5), 498–506 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Toukach, F.V., Ananikov, V.P.: Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem. Soc. Rev. 42(21), 8376–8415 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Wang, L.X., Davis, B.G.: Realizing the promise of chemical glycobiology. Chem. Sci. 4(9), 3381–3394 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Castagner, B., Seeberger, P.H.: Automated solid phase oligosaccharide synthesis. Top. Curr. Chem. 278, 289–309 (2007)

    Article  CAS  Google Scholar 

  15. Hsu, C.-H., Hung, S.-C., Wu, C.-Y., Wong, C.-H.: Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. 50(50), 11872–11923 (2011)

    Article  CAS  Google Scholar 

  16. Marino, P.A., Muthana, S.M., Gildersleeve, J.C.: Glycan microarrays: powerful tools for biomarker discovery. Cancer. Biomark 14(1), 29–41 (2014)

    CAS  Google Scholar 

  17. Smith, D.F., Song, X., Cummings, R.D.: Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol. 480, 417–444 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Fukui, S., Feizi, T., Galustian, C., Lawson, A.M., Chai, W.: Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D.J., Skehel, J.J., van Die, I., Burton, D.R., Wilson, I.A., Cummings, R., Bovin, N., Wong, C.H., Paulson, J.C.: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101(49), 17033–17038 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Park, S., Shin, I.: Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Ed. Engl. 41(17), 3180–3182 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Song, X., Heimburg-Molinaro, J., Cummings, R.D., Smith, D.F.: Chemistry of natural glycan microarrays. Curr. Opin. Chem. Biol. 18, 70–77 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez, R.A., Blixt, O.: Identification of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol. 415, 292–310 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Rillahan, C.D., Paulson, J.C.: Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80, 797–823 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Han, X., Zheng, Y., Munro, C.J., Ji, Y., Braunschweig, A.B...: Carbohydrate nanotechnology: hierarchical assembly using nature’s other information carrying biopolymers. Curr. Opin. Biotechnol. 34C, 41–47 (2014)

    Google Scholar 

  25. Song, X., Lasanajak, Y., Rivera-Marrero, C., Luyai, A., Willard, M., Smith, D.F., Cummings, R.D.: Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal. Biochem. 395(2), 151–160 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Song, X., Lasanajak, Y., Xia, B., Heimburg-Molinaro, J., Rhea, J.M., Ju, H., Zhao, C., Molinaro, R.J., Cummings, R.D., Smith, D.F.: Shotgun glycomics: a microarray strategy for functional glycomics. Nat. Methods 8(1), 85–90 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Palma, A.S., Feizi, T., Childs, R.A., Chai, W., Liu, Y.: The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome. Curr. Opin. Chem. Biol. 18, 87–94 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Muthana, S.M., Gildersleeve, J.C.: Glycan microarrays: powerful tools for biomarker discovery. Cancer. Biomark 14(1), 29–41 (2014)

    PubMed  Google Scholar 

  29. Breitling, J., Aebi, M.: N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5(8), a013359 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  30. Stanley, P., Schachter, H., Taniguchi, N.: N-Glycans (Chapter 8) In: Essentials of Glycobiology, Cold Spring Harbor Laboratories Press (2009)

  31. Tarentino, A.L., Plummer Jr., T.H., Maley, F.: The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol. Chem. 249(3), 818–824 (1974)

    CAS  PubMed  Google Scholar 

  32. Elder, J.H., Alexander, S.: endo-beta-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc. Natl. Acad. Sci. U. S. A. 79(15), 4540–4544 (1982)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Plummer Jr., T.H., Tarentino, A.L.: Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology 1(3), 257–263 (1991)

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi, N., Nishibe, H.: Some characteristics of a new glycopeptidase acting on aspartylglycosylamine linkages. J. Biochem. 84(6), 1467–1473 (1978)

    CAS  PubMed  Google Scholar 

  35. Taga, E.M., Waheed, A., Van Etten, R.L.: Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond. Biochemistry 23(5), 815–822 (1984)

    Article  CAS  PubMed  Google Scholar 

  36. Tretter, V., Altmann, F., Marz, L.: Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem. FEBS 199(3), 647–652 (1991)

    Article  CAS  Google Scholar 

  37. Yosizawa, Z., Sato, T., Schmid, K.: Hydrazinolysis of alpha-1-acid glycoprotein. Biochim. Biophys. Acta 121(2), 417–420 (1966)

    Article  CAS  PubMed  Google Scholar 

  38. Nakakita, S., Sumiyoshi, W., Miyanishi, N., Hirabayashi, J.: A practical approach to N-glycan production by hydrazinolysis using hydrazine monohydrate. Biochem. Biophys. Res. Commun. 362(3), 639–645 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. Huang, Y., Mechref, Y., Novotny, M.V.: Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem. 73(24), 6063–6069 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Yu, G., Zhang, Y., Zhang, Z., Song, L., Wang, P., Chai, W.: Effect and limitation of excess ammonium on the release of O-glycans in reducing forms from glycoproteins under mild alkaline conditions for glycomic and functional analysis. Anal. Chem. 82(22), 9534–9542 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Song, X., Ju, H., Zhao, C., Lasanajak, Y.: Novel strategy to release and tag N-glycans for functional glycomics. Bioconjug. Chem. 25(10), 1881–1887 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Endo, Y., Kobata, A.: Partial purification and characterization of an endo-alpha-N-acetylgalactosaminidase from the culture of medium of Diplococcus pneumoniae. J. Biochem. 80(1), 1–8 (1976)

    CAS  PubMed  Google Scholar 

  43. Carlson, D.M.: Oligosaccharides isolated from pig submaxillary mucin. J. Biol. Chem. 241(12), 2984–2986 (1966)

    CAS  PubMed  Google Scholar 

  44. Carlson, D.M.: Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J. Biol. Chem. 243(3), 616–626 (1968)

    CAS  PubMed  Google Scholar 

  45. Wang, C., Fan, W., Zhang, P., Wang, Z., Huang, L.: One-pot nonreductive O-glycan release and labeling with 1-phenyl-3-methyl-5-pyrazolone followed by ESI-MS analysis. Proteomics 11(21), 4229–4242 (2011)

    Article  PubMed  Google Scholar 

  46. Zauner, G., Koeleman, C.A., Deelder, A.M., Wuhrer, M.: Mass spectrometric O-glycan analysis after combined O-glycan release by beta-elimination and 1-phenyl-3-methyl-5-pyrazolone labeling. Biochim. Biophys. Acta 1820(9), 1420–1428 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. Merry, A.H., Neville, D.C.A., Royle, L., Matthews, B., Harvey, D.J., Dwek, R.A., Rudd, P.M.: Recovery of intact 2-aminobenzamide-labeled o-glycans released from glycoproteins by hydrazinolysis. Anal. Biochem. 304(1), 91–99 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. Patel, T., Bruce, J., Merry, A., Bigge, C., Wormald, M., Parekh, R., Jaques, A.: Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 32(2), 679–693 (1993)

    Article  CAS  PubMed  Google Scholar 

  49. Chai, W., Feizi, T., Yuen, C.T., Lawson, A.M.: Nonreductive release of O-linked oligosaccharides from mucin glycoproteins for structure/function assignments as neoglycolipids: application in the detection of novel ligands for E-selectin. Glycobiology 7(6), 861–872 (1997)

    Article  CAS  PubMed  Google Scholar 

  50. Miura, Y., Kato, K., Takegawa, Y., Kurogochi, M., Furukawa, J., Shinohara, Y., Nagahori, N., Amano, M., Hinou, H., Nishimura, S.: Glycoblotting-assisted O-glycomics: ammonium carbamate allows for highly efficient o-glycan release from glycoproteins. Anal. Chem. 82(24), 10021–10029 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. Prasanphanich, N.S., Song, X., Heimburg-Molinaro, J., Luyai, A., Lasanajak, Y., Cutler, C., Smith, D.F., Cummings, R.D.: An intact reducing glycan promotes the specific immune response to lacto-N-neotetraose-BSA neoglycoconjugates. Bioconjug. Chem. 26(3), 559–571 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. Ito, M., Yamagata, T.: A novel glycosphingolipid-degrading enzyme cleaves the linkage between the oligosaccharide and ceramide of neutral and acidic glycosphingolipids. J. Biol. Chem. 261(30), 14278–14282 (1986)

    CAS  PubMed  Google Scholar 

  53. Ito, M., Yamagata, T.: Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycoceramidases) from a mutant strain of Rhodococcus sp. Evidence for three molecular species of endoglycoceramidase with different specificities. J. Biol. Chem. 264(16), 9510–9519 (1989)

    CAS  PubMed  Google Scholar 

  54. Ashida, H., Yamamoto, K., Kumagai, H., Tochikura, T.: Purification and characterization of membrane-bound endoglycoceramidase from Corynebacterium sp. Eur J Biochem. FEBS 205(2), 729–735 (1992)

    Article  CAS  Google Scholar 

  55. Ishibashi, Y., Nakasone, T., Kiyohara, M., Horibata, Y., Sakaguchi, K., Hijikata, A., Ichinose, S., Omori, A., Yasui, Y., Imamura, A., Ishida, H., Kiso, M., Okino, N., Ito, M.: A novel endoglycoceramidase hydrolyzes oligogalactosylceramides to produce galactooligosaccharides and ceramides. J. Biol. Chem. 282(15), 11386–11396 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. Wiegandt, H., Baschang, G.: The isolation of the sugar portion of glycosphingolipids by ozonolysis and fragmentation. Z Naturforsch B 20, 164–166 (1965)

    Article  CAS  PubMed  Google Scholar 

  57. Hakomori, S.I.: Release of carbohydrates from sphingoglycolipid by osmium-catalyzed periodate oxidation followed by treatment with mild alkali. J. Lipid Res. 7(6), 789–792 (1966)

    CAS  PubMed  Google Scholar 

  58. Song, X., Smith, D.F., Cummings, R.D.: Nonenzymatic release of free reducing glycans from glycosphingolipids. Anal. Biochem. 429, 82–87 (2012). Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved

    Article  CAS  PubMed  Google Scholar 

  59. Noti, C., de Paz, J.L., Polito, L., Seeberger, P.H.: Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin-protein interactions. Chemistry 12(34), 8664–8686 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. Park, T.J., Lee, M.Y., Dordick, J.S., Linhardt, R.J.: Signal amplification of target protein on heparin glycan microarray. Anal. Biochem. 383(1), 116–121 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hase, S., Ikenaka, T., Matsushima, Y.: Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem. Biophys. Res. Commun. 85(1), 257–263 (1978)

    Article  CAS  PubMed  Google Scholar 

  62. Bigge, J.C., Patel, T.P., Bruce, J.A., Goulding, P.N., Charles, S.M., Parekh, R.B.: Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230(2), 229–238 (1995)

    Article  CAS  PubMed  Google Scholar 

  63. Anumula, K.R.: Single tag for total carbohydrate analysis. Anal. Biochem. 457, 31–37 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. Xia, B., Kawar, Z.S., Ju, T., Alvarez, R.A., Sachdev, G.P., Cummings, R.D.: Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2(11), 845–850 (2005)

    Article  CAS  PubMed  Google Scholar 

  65. Song, X., Xia, B., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Quantifiable fluorescent glycan microarrays. Glycoconj. J. 25(1), 15–25 (2008)

    Article  CAS  PubMed  Google Scholar 

  66. de Boer, A.R., Hokke, C.H., Deelder, A.M., Wuhrer, M.: General microarray technique for immobilization and screening of natural glycans. Anal. Chem. 79(21), 8107–8113 (2007)

    Article  PubMed  Google Scholar 

  67. Song, X., Xia, B., Stowell, S.R., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16(1), 36–47 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Luyai, A., Lasanajak, Y., Smith, D.F., Cummings, R.D., Song, X.: Facile preparation of fluorescent neoglycoproteins using p-nitrophenyl anthranilate as a heterobifunctional linker. Bioconjug. Chem. 20(8), 1618–1624 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Song, X., Johns, B.A., Ju, H., Lasanajak, Y., Zhao, C., Smith, D.F., Cummings, R.D.: Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans. ACS Chem. Biol. 8(11), 2478–2483 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Yamada, K., Hirabayashi, J., Kakehi, K.: Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array. Anal Chem (Washington, DC, U S) 85, 3325–3333 (2013)

    Article  CAS  Google Scholar 

  71. de Boer, A.R., Hokke, C.H., Deelder, A.M., Wuhrer, M.: Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj. J 25(1), 75–84 (2008)

    Article  PubMed  Google Scholar 

  72. Song, X., Lasanajak, Y., Xia, B., Smith, D.F., Cummings, R.D.: Fluorescent glycosylamides produced by microscale derivatization of free glycans for natural glycan microarrays. ACS Chem. Biol. 4(9), 741–750 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Yu, Y., Lasanajak, Y., Song, X., Hu, L., Ramani, S., Mickum, M.L., Ashline, D.J., Prasad, B.V., Estes, M.K., Reinhold, V.N., Cummings, R.D., Smith, D.F.: Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol. Cell. Proteomics: MCP 13(11), 2944–2960 (2014)

    Article  CAS  PubMed  Google Scholar 

  74. Ashline, D.J., Yu, Y., Lasanajak, Y., Song, X., Hu, L., Ramani, S., Prasad, V., Estes, M.K., Cummings, R.D., Smith, D.F., Reinhold, V.N.: Structural characterization by multistage mass spectrometry (MSn) of human milk glycans recognized by human rotaviruses. Mol. Cell. Proteomics: MCP 13(11), 2961–2974 (2014)

    Article  CAS  PubMed  Google Scholar 

  75. Yu, Y., Mishra, S., Song, X., Lasanajak, Y., Bradley, K.C., Tappert, M.M., Air, G.M., Steinhauer, D.A., Halder, S., Cotmore, S., Tattersall, P., Agbandje-McKenna, M., Cummings, R.D., Smith, D.F.: Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 287(53), 44784–44799 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Byrd-Leotis, L., Liu, R., Bradley, K.C., Lasanajak, Y., Cummings, S.F., Song, X., Heimburg-Molinaro, J., Galloway, S.E., Culhane, M.R., Smith, D.F., Steinhauer, D.A., Cummings, R.D.: Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc. Natl. Acad. Sci. U. S. A. 111(22), E2241–E2250 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. van Diepen, A., Smit, C.H., van Egmond, L., Kabatereine, N.B., de Moira, A.P., Dunne, D.W., Hokke, C.H.: Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray. PLoS Neglected Trop Dis 6(11), e1922 (2012)

    Article  Google Scholar 

  78. Song, X., Lasanajak, Y., Olson, L.J., Boonen, M., Dahms, N.M., Kornfeld, S., Cummings, R.D., Smith, D.F.: Glycan microarray analysis of P-type lectins reveals distinct phosphomannose glycan recognition. J. Biol. Chem. 284(50), 35201–35214 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Bohnsack, R.N., Song, X., Olson, L.J., Kudo, M., Gotschall, R.R., Canfield, W.M., Cummings, R.D., Smith, D.F., Dahms, N.M.: Cation-independent mannose 6-phosphate receptor: a composite of distinct phosphomannosyl binding sites. J. Biol. Chem. 284(50), 35215–35226 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Olson, L.J., Castonguay, A.C., Lasanajak, Y., Peterson, F.C., Cummings, R.D., Smith, D.F., Dahms, N.M.: Identification of a fourth mannose 6-phosphate binding site in the cation-independent mannose 6-phosphate receptor. Glycobiology (2015).

  81. Padler-Karavani, V., Song, X., Yu, H., Hurtado-Ziola, N., Huang, S., Muthana, S., Chokhawala, H.A., Cheng, J., Verhagen, A., Langereis, M.A., Kleene, R., Schachner, M., de Groot, R.J., Lasanajak, Y., Matsuda, H., Schwab, R., Chen, X., Smith, D.F., Cummings, R.D., Varki, A.: Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays. J. Biol. Chem. 287(27), 22593–22608 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Song, X., Yu, H., Chen, X., Lasanajak, Y., Tappert, M.M., Air, G.M., Tiwari, V.K., Cao, H., Chokhawala, H.A., Zheng, H., Cummings, R.D., Smith, D.F.: A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J. Biol. Chem. 286(36), 31610–31622 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Campbell, M.P., Ranzinger, R., Lutteke, T., Mariethoz, J., Hayes, C.A., Zhang, J., Akune, Y., Aoki-Kinoshita, K.F., Damerell, D., Carta, G., York, W.S., Haslam, S.M., Narimatsu, H., Rudd, P.M., Karlsson, N.G., Packer, N.H., Lisacek, F.: Toolboxes for a standardised and systematic study of glycans. BMC Bioinform 15 Suppl 1, S9 (2014)

    Article  Google Scholar 

  84. Tharmalingam, T., Adamczyk, B., Doherty, M.A., Royle, L., Rudd, P.M.: Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides. Glycoconj. J. 30(2), 137–146 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work of the authors in this area is supported by NIH Grant P41GM103694 to RDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezheng Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Heimburg-Molinaro, J., Smith, D.F. et al. Glycan microarrays of fluorescently-tagged natural glycans. Glycoconj J 32, 465–473 (2015). https://doi.org/10.1007/s10719-015-9584-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9584-8

Keywords

Navigation