Advertisement

Glycoconjugate Journal

, Volume 32, Issue 3–4, pp 79–85 | Cite as

Sialic acids: biomarkers in endocrinal cancers

  • Shyamasree GhoshEmail author
Mini-Review

Abstract

Sialylations are post translational modification of proteins and lipids that play important role in recognition, signaling, immunological response and cell-cell interaction. Improper sialylations due to altered sialyl transferases, sialidases, gene structure and expression, sialic acid metabolism however lead to diseases and thus sialic acids form an important biomarker in disease. In the endocrinal biology such improper sialylations including altered expression of sialylated moieties have been shown to be associated with disorders. Cancer still remains to be the major cause of global death and the cancer of the endocrine organs suffer from the dearth of appropriate markers for disease prediction at the early stage and monitoring. This review is aimed at evaluating the role of sialic acids as markers in endocrinal disorders with special reference to cancer of the endocrine organs. The current study is summarized under the following headings of altered sialylations in endocrinal cancer of the (i) ovary (ii) pancreas (iii) thyroid (iv) adrenal and (v) pituitary gland. Studies in expression of sialic acid in testis cancer are limited. The future scope of this review remains in the targeting of endocrinal cancer by targeting altered sialylation which is a common expression associated with endocrinal cancer.

Keywords

Sialic acids Marker Endocrines Cancer Sialylations Sialoglycoconjugate 

Notes

Acknowledgements

The author acknowledges School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar,  under Dept of Atomic Energy (DAE), Govt of India..

Financial support

No financial support or grant was taken to complete this work.

Conflict of interest

The author discloses no potential conflicts of interest.

References

  1. 1.
    Pshezhetsky, A.V., Ashmarina, L.I.: Desialylation of surface receptors as a new dimension in cell signaling. Biochemistry (Mosc) 78, 736–745 (2013)CrossRefGoogle Scholar
  2. 2.
    Morrot A.: The role of sialic acid-binding receptors (Siglecs) in the immunomodulatory effects of trypanosoma cruzi. Sialoglycoproteins on the protective immunity of the host. Scientifica (Cairo) 2013, Article ID 965856, 1–7 (2013)Google Scholar
  3. 3.
    Raju, T.S., Lang, S.E.: Diversity in structure and functions of antibody sialylation in the Fc. Curr. Opin. Biotechnol. 30, 147–152 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    Angata, K., Suzuki, M., McAuliffe, J., Ding, Y., Hindsgaul, O., Fukuda, M.: Differential biosynthesis of polysialic acid on neural cell adhesion molecule (NCAM) and oligosaccharide acceptors by three distinct alpha 2,8-sialyltransferases, ST8Sia IV (PST), ST8SiaII (STX), and ST8SiaIII. J. Biol. Chem. 275, 18594–18601 (2000)CrossRefPubMedGoogle Scholar
  5. 5.
    Baycin-Hizal, D., Gottschalk, A., Jacobson, E., Mai, S., Wolozny, D., Zhang, H., Krag, S.S., Betenbaugh, M.J.: Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem. Biophys. Res. Commun. 453, 243–253 (2014)CrossRefPubMedGoogle Scholar
  6. 6.
    Wide, L., Eriksson, K.: Dynamic changes in glycosylation and glycan composition of serum FSH and LH during natural ovarian stimulation. Ups. J. Med. Sci. 118, 153–164 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Hiukka, A., Ståhlman, M., Pettersson, C., Levin, M., Adiels, M., Teneberg, S., Leinonen, E.S., Hultén, L.M., Wiklund, O., Oresic, M., Olofsson, S.O., Taskinen, M.R., Ekroos, K., Borén, J.: ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes 58, 2018–2026 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Nowosadzka, E., Szymonik-Lesiuk, S., Kurzepa, J.: The effects of hypo- and hyperthyroidism on nuclear, cytosolic, endoplasmic and mitochondrial fractions of sialoglycoproteins in rabbit hepatocytes. Folia Biol. (Praha) 55, 7–10 (2009)Google Scholar
  9. 9.
    Trojan, J., Theodoropoulou, M., Usadel, K.H., Stalla, G.K., Schaaf, L.: Modulation of human thyrotropin oligosaccharide structures–enhanced proportion of sialylated and terminally galactosylated serum thyrotropin isoforms in subclinical and overt primary hypothyroidism. J. Endocrinol. 158, 359–365 (1998)CrossRefPubMedGoogle Scholar
  10. 10.
    Ghosh, S., Bandyopadhyay, S., Mukherjee, K., Mallick, A., Pal, S., Mandal, C., Bhattacharya, D.K., Mandal, C.: O-acetylation of sialic acids is required for the survival of lymphoblasts in childhood acute lymphoblastic leukemia (ALL). Glycoconj. J. 24, 17–24 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    Ghosh, S., Bandyopadhyay, S., Mallick, A., Pal, S., Vlasak, R., Bhattacharya, D.K., Mandal, C.: Interferon gamma promotes survival of lymphoblasts overexpressing 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia (ALL). J. Cell. Biochem. 95, 206–216 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    Ghosh, S., Bandyopadhyay, S., Pal, S., Das, B., Bhattacharya, D.K., Mandal, C.: Increased interferon gamma production by peripheral blood mononuclear cells in response to stimulation of overexpressed disease-specific 9-O-acetylated sialoglycoconjugates in children suffering from acute lymphoblastic leukaemia. Br. J. Haematol. 128, 35–41 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Ghosh, S., Bandyopadhyay, S., Bhattacharya, D.K., Mandal, C.: Altered erythrocyte membrane characteristics during anemia in childhood acute lymphoblastic leukemia. Ann. Hematol. 84, 76–84 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Pal, S., Ghosh, S., Bandyopadhyay, S., Mandal, C., Bandhyopadhyay, S., Bhattacharya, D.K., Mandal, C.: Differential expression of 9-O-acetylated sialoglycoconjugates on leukemic blasts: a potential tool for long-term monitoring of children with acute lymphoblastic leukemia. Int. J. Cancer 111, 270–277 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    Pal, S., Ghosh, S., Mandal, C., Kohla, G., Brossmer, R., Isecke, R., Merling, A., Schauer, R., Schwartz-Albiez, R., Bhattacharya, D.K., Mandal, C.: Purification and characterization of 9-O-acetylated sialoglycoproteins from leukemic cells and their potential as immunological tool for monitoring childhood acute lymphoblastic leukemia. Glycobiology 14, 859–870 (2004)CrossRefPubMedGoogle Scholar
  16. 16.
    Dall’Olio, F., Malagolini, N., Trinchera, M., Chiricolo, M.: Sialosignaling: sialyltransferases as engines of self-fueling loops in cancer progression. Biochim. Biophys. Acta 1840, 2752–2764 (2014)CrossRefPubMedGoogle Scholar
  17. 17.
    Büll, C., Stoel, M.A., den Brok, M.H., Adema, G.J.: Sialic acids sweeten a tumor’s life. Cancer Res. 74, 3199–3204 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    Rottier, R.J., Bonten, E., d’Azzo, A.: A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse. Hum. Mol. Genet. 7, 313–321 (1988)CrossRefGoogle Scholar
  19. 19.
    Park, J.J., Lee, M.: Increasing the α 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver 7, 629–641 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Costa-Nogueira, C., Villar-Portela, S., Cuevas, E., Gil-Martín, E., Fernández-Briera, A.: Synthesis and expression of CDw75 antigen in human colorectal cancer. BMC Cancer 9, 1–10 (2009)CrossRefGoogle Scholar
  21. 21.
    Picco, G., Julien, S., Brockhausen, I., Beatson, R., Antonopoulos, A., Haslam, S., Mandel, U., Dell, A., Pinder, S., Taylor-Papadimitriou, J., Burchell, J.: Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology 20, 1241–1250 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Lee, M., Park, J.J., Ko, Y.G., Lee, Y.S.: Cleavage of ST6Gal I by radiation-induced BACE1 inhibits golgi-anchored ST6Gal I-mediated sialylation of integrin β1 and migration in colon cancer cells. 7, 110, (2012)Google Scholar
  23. 23.
    Park, J.J., Yi, J.Y., Jin, Y.B., Lee, Y.J., Lee, J.S., Lee, Y.S., Ko, Y.G., Lee, M.: Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem. Pharmacol. 83, 849–57 (2012)CrossRefPubMedGoogle Scholar
  24. 24.
    Swindall, A.F., Bellis, S.L.: Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J. Biol. Chem. 286, 22982–22990 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Kim, H.J., Kim, S.C., Ju, W., Kim, Y.H., Yin, S.Y., Kim, H.J.: Aberrant sialylation and fucosylation of intracellular proteins in cervical tissue are critical markers of cervical carcinogenesis. Oncol. Rep. 31, 1417–1422 (2013)PubMedGoogle Scholar
  26. 26.
    Saldova, R., Wormald, M.R., Dwek, R.A., Rudd, P.M.: Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis. Markers 25, 219–232 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Saldova, R., Piccard, H., Pérez-Garay, M., Harvey, D.J., Struwe, W.B., Galligan, M.C., Berghmans, N., Madden, S.F., Peracaula, R., Opdenakker, G., Rudd, P.M.: Increase in sialylation and branching in the mouse serum N-glycome correlates with inflammation and ovarian tumour progression. PLoS ONE 8, e71159 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Saldova, R., Dempsey, E., Pérez-Garay, M., Mariño, K., Watson, J.A., Blanco-Fernández, A., Struwe, W.B., Harvey, D.J., Madden, S.F., Peracaula, R., McCann, A., Rudd, P.M.: 5-AZA-2′-deoxycytidine induced demethylation influences N-glycosylation of secreted glycoproteins in ovarian cancer. Epigenetics 6, 1362–1372 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    Wu, J., Xie, X., Nie, S., Buckanovich, R.J., Lubman, D.M.: Altered expression of sialylated glycoproteins in ovarian cancer sera using lectin-based ELISA assay and quantitative glycoproteomics analysis. J. Proteome Res. 12, 3342–3352 (2013)CrossRefPubMedGoogle Scholar
  30. 30.
    Kuzmanov, U., Musrap, N., Kosanam, H., Smith, C.R., Batruch, I., Dimitromanolakis, A., Diamandis, E.P.: Glycoproteomic identification of potential glycoprotein biomarkers in ovarian cancer proximal fluids. Clin. Chem. Lab. Med. 51, 1467–1476 (2012)Google Scholar
  31. 31.
    Wang, P.H., Lee, W.L., Juang, C.M., Yang, Y.H., Lo, W.H., Lai, C.R., Hsieh, S.L., Yuan, C.C.: Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol. Oncol. 99, 631–639 (2005)CrossRefPubMedGoogle Scholar
  32. 32.
    Kuzmanov, U., Jiang, N., Smith, C.R., Soosaipillai, A., Diamandis, E.P.: Differential N-glycosylation of kallikrein 6 derived from ovarian cancer cells or the central nervous system. Mol. Cell. Proteomics 8, 791–798 (2008)CrossRefPubMedGoogle Scholar
  33. 33.
    Berbeć, H., Paszkowska, A., Siwek, B., Gradziel, K., Cybulski, M.: Total serum sialic acid concentration as a supporting marker of malignancy in ovarian neoplasia. Eur. J. Gynaecol. Oncol. 20, 389–392 (1999)PubMedGoogle Scholar
  34. 34.
    Karlsson, N.G., McGuckin, M.A.: O-Linked glycome and proteome of high-molecular-mass proteins in human ovarian cancer ascites: identification of sulfation, disialic acid and O-linked fucose. Glycobiology 22, 918–929 (2012)CrossRefPubMedGoogle Scholar
  35. 35.
    Santin, A.D., Ravindranath, M.H., Bellone, S., Muthugounder, S., Palmieri, M., O’Brien, T.J., Roman, J., Cannon, M.J., Pecorelli, S.: Increased levels of gangliosides in the plasma and ascitic fluid of patients with advanced ovarian cancer. BJOG 111, 613–618 (2004)CrossRefPubMedGoogle Scholar
  36. 36.
    Goodarzi, M.T., Turner, G.A.: Decreased branching, increased fucosylation and changed sialylation of alpha-1 proteinase inhibitor in breast and ovarian cancer. Clin. Chim. Acta 236, 161–171 (1995)CrossRefPubMedGoogle Scholar
  37. 37.
    Yue, K., Bian, M., Zhu, D., Liu, W., Siu, S.: Serum lipid-associated sialic acid (LSA) in diagnosing and monitoring ovarian cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 17, 128–132 (1995)PubMedGoogle Scholar
  38. 38.
    Petru, E., Sevin, B.U., Averette, H.E., Koechli, O.R., Perras, J.P., Hilsenbeck, S.: Comparison of three tumor markers–CA-125, lipid-associated sialic acid (LSA), and NB/70K–in monitoring ovarian cancer. Gynecol. Oncol. 38, 181–186 (1990)CrossRefPubMedGoogle Scholar
  39. 39.
    Vardi, J.R., Tadros, G.H., Foemmel, R., Shebes, M.: Plasma lipid-associated sialic acid and serum CA 125 as indicators of disease status with advanced ovarian cancer. Obstet. Gynecol. 74, 379–383 (1989)PubMedGoogle Scholar
  40. 40.
    Strache, R.R., Büttner, H.H., Göcze, P.M., Briese, V.: Sialic acid concentrations in blood samples as well as in cyst and peritoneal fluid in patients with ovarian cysts and cystic ovarian tumors. Zentralbl. Gynakol. 112, 1445–1453 (1990)PubMedGoogle Scholar
  41. 41.
    Yang, L., Nyalwidhe, J.O., Guo, S., Drake, R.R., Semmes OJ.Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer. Mol Cell Proteomics. 10(6):M110.007294 1–22, (2011).Google Scholar
  42. 42.
    Saldova, R., Fan, Y., Fitzpatrick, J.M., Watson, R.W., Rudd, P.M.: Core fucosylation and alpha 2–3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 21, 195–205 (2011)CrossRefPubMedGoogle Scholar
  43. 43.
    PBassagañas, S., Pérez-Garay, M., Peracaula, R.: Cell surface sialic acid modulates extracellular matrix adhesion and migration in pancreatic adenocarcinoma cells. Pancreas 43, 109–117 (2014)CrossRefGoogle Scholar
  44. 44.
    Mandal, C., Sarkar, S., Chatterjee, U., Schwartz-Albiez, R., Mandal, C.: Disialoganglioside GD3-synthase over expression inhibits survival and angiogenesis of pancreatic cancer cells through cell cycle arrest at S-phase and disruption of integrin-β1-mediated anchorage. Int. J. Biochem. Cell Biol. 53, 162–173 (2014)CrossRefPubMedGoogle Scholar
  45. 45.
    Gruszewska, E., Chrostek, L., Cylwik, B., Tobolczyk, J., Szmitkowski, M., Kuklinski, A., Kedra, B.: Serum sialic acid as a marker of pancreatic cancers. Clin. Lab. 59, 781–788 (2013)PubMedGoogle Scholar
  46. 46.
    Pérez-Garay, M., Arteta, B., Llop, E., Cobler, L., Pagès, L., Ortiz, R., Ferri, M.J., de Bolós, C., Figueras, J., de Llorens, R., Vidal-Vanaclocha, F., Peracaula, R.: α2,3-Sialyltransferase ST3Gal IV promotes migration and metastasis in pancreatic adenocarcinoma cells and tends to be highly expressed in pancreatic adenocarcinoma tissues. Int. J. Biochem. Cell Biol. 45, 1748–1757 (2013)CrossRefPubMedGoogle Scholar
  47. 47.
    Yabu, M., Korekane, H., Takahashi, H., Ohigashi, H., Ishikawa, O., Miyamoto, Y.: Accumulation of free Neu5Ac-containing complex-type N-glycans in human pancreatic cancers. Glycoconj. J. 30, 247–256 (2012)CrossRefPubMedGoogle Scholar
  48. 48.
    Masaki, Y., Oka, M., Ogura, Y., Ueno, T., Nishihara, K., Tangoku, A., Takahashi, M., Yamamoto, M., Irimura, T.: Sialylated MUC1 mucin expression in normal pancreas, benign pancreatic lesions, and pancreatic ductaladenocarcinoma. Hepatogastroenterology 46, 2240–2245 (1999)PubMedGoogle Scholar
  49. 49.
    Kameda, K., Shimada, H., Ishikawa, T., Takimoto, A., Momiyama, N., Hasegawa, S., Misuta, K., Nakano, A., Nagashima, Y., Ichikawa, Y.: Expression of highly polysialylated neural cell adhesion molecule in pancreatic cancer neural invasive lesion. Cancer Lett. 137, 201–207 (1999)CrossRefPubMedGoogle Scholar
  50. 50.
    Liu, H., Ma, Q., Xu, Q., Lei, J., Li, X., Wang, Z., Wu, E.: Therapeutic potential of perineural invasion, hypoxia and desmoplasia in pancreatic cancer. Curr. Pharm. Des. 18, 2395–2403 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Amano, M., Eriksson, H., Manning, J.C., Detjen, K.M., André, S., Nishimura, S., Lehtiö, J., Gabius, H.J.: Tumour suppressor p16(INK4a) - anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J. 279, 4062–4080 (2012)CrossRefPubMedGoogle Scholar
  52. 52.
    Almaraz, R.T., Tian, Y., Bhattarcharya, R., Tan, E., Chen, S.H., Dallas, M.R., Chen, L., Zhang, Z., Zhang, H., Konstantopoulos, K., Yarema, K.J.: Metabolic flux increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol. Cell. Proteomics 11, M112.017558 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Maupin, K.A., Sinha, A., Eugster, E., Miller, J., Ross, J., Paulino, V., Keshamouni, V.G., Tran, N., Berens, M., Webb, C., Haab, B.B.: Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems. PLoS ONE 5, e13002 (2012)CrossRefGoogle Scholar
  54. 54.
    Pérez-Garay, M., Arteta, B., Pagès, L., de, Llorens, R., de, Bolòs, C., Vidal-Vanaclocha, F., Peracaula, R.: alpha2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS ONE. 5(9). (2010)Google Scholar
  55. 55.
    Glavey, S.V., Manierm, S., Natoni, A., Sacco, A., Moschetta, M., Reagan, M.R., Murillo, L.S., Sahin, I., Wu, P., Mishima, Y., Zhang, Y., Zhang, W., Zhang, Y., Morgan, G., Joshi, L., Roccaro, A.M., Ghobrial, I.M., O’Dwyer, M.E.: The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood 124(11), 1765–1776 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Ilić, V., Milosević-Jovcić, N., Petrović, S., Marković, D., Stefanović, G., Ristić, T.: Glycosylation of IgG B cell receptor (IgG BCR) in multiple myeloma: relationship between sialylation and the signal activity of IgG BCR. Glycoconj. J. 25, 383–392 (2008)CrossRefPubMedGoogle Scholar
  57. 57.
    Fleming, S.C., Smith, S., Knowles, D., Skillen, A., Self, C.H.: Increased sialylation of oligosaccharides on IgG paraproteins–a potential new tumour marker inmultiple myeloma. J. Clin. Pathol. 51, 825–830 (1998)CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Zhao, Y., Li, Y., Ma, H., Dong, W., Zhou, H., Song, X., Zhang, J., Jia, L.: Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. Mol. Cell. Proteomics 13, 520–536 (2014)CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Varki, A., Schauer, R.: Sialic Acids. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. Chapter 14. (2009)Google Scholar
  60. 60.
    Pickup, J.C., Day, C., Bailey, C.J., Samuel, A., Chusney, G.D., Garland, H.O., Hamilton, K., Balment, R.J.: Plasma sialic acid in animal models of diabetes mellitus: evidence for modulation of sialic acid concentrations by insulin deficiency. Life Sci. 57(1383–1391) (1995)Google Scholar
  61. 61.
    Kopitzsch, S., Winkler, L., Oswald, B., Schlag, B., Dargel, R.: The sialylation rate of apolipoprotein E in insulin-dependent (IDDM) and non-insulin-dependent (NIDDM) diabetes mellitus. Z. Med. Lab. Diagn. 31, 47–52 (1990)PubMedGoogle Scholar
  62. 62.
    Nedić, O., Lagundžin, D., Masnikosa, R.: Posttranslational modifications of the insulin-like growth factor-binding protein 3 in patients with type 2 diabetes mellitus assessed by affinity chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 904, 93–98 (2012)CrossRefGoogle Scholar
  63. 63.
    Waters, P.J., Flynn, M.D., Pennock, C.A., Corrall, R.J., Greenwood, R.J., Eisenthal, R.: Decreased sialidase activity in mononuclear leucocytes of type 1 diabetic subjects: relationship to diabetic complications and glycaemic control. Diabet. Med. 12, 670–673 (1995)CrossRefPubMedGoogle Scholar
  64. 64.
    Rogers, M.E., Williams, D.T., Niththyananthan, R., Rampling, M.W., Heslop, K.E., Johnston, D.G.: Decrease in erythrocyte glycophorin sialic acid content is associated with increased erythrocyte aggregation in human diabetes. Clin. Sci. (Lond.) 82(309–313) (1992)Google Scholar
  65. 65.
    Lee, C.L., Chiu, P.C., Pang, P.C., Chu, I.K., Lee, K.F., Koistinen, R., Koistinen, H., Seppälä, M., Morris, H.R., Tissot, B., Panico, M., Dell, A., Yeung, W.S.: Glycosylation failure extends to glycoproteins in gestational diabetes mellitus: evidence from reduced α2-6sialylation and impaired immunomodulatory activities of pregnancy-related glycodelin-A. Diabetes 60, 909–917 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Kiljański, J., Ambroziak, M., Pachucki, J., Jazdzewski, K., Wiechno, W., Stachlewska, E., Górnicka, B., Bogdańska, M., Nauman, J., Bartoszewicz, Z.: Thyroid sialyltransferase mRNA level and activity are increased in Graves’ disease. Thyroid 15, 645–652 (2005)CrossRefPubMedGoogle Scholar
  67. 67.
    Janega, P., Cerná, A., Kholová, I., Brabencová, E., Babál, P.: Sialic acid expression in autoimmune thyroiditis. Acta Histochem. 104, 343–347 (2002)CrossRefPubMedGoogle Scholar
  68. 68.
    Persani, L., Borgato, S., Romoli, R., Asteria, C., Pizzocaro, A., Beck-Peccoz, P.: Changes in the degree of sialylation of carbohydrate chains modify the biological properties of circulating thyrotropin isoforms in various physiological and pathological states. J. Clin. Endocrinol. Metab. 83, 2486–2492 (1998)PubMedGoogle Scholar
  69. 69.
    Babál, P., Janega, P., Cerná, A., Kholová, I., Brabencová, E.: Neoplastic transformation of the thyroid gland is accompanied by changes in cellular sialylation. Acta Histochem. 108, 133–140 (2006)CrossRefPubMedGoogle Scholar
  70. 70.
    Krzeslak, A., Gaj, Z., Pomorski, L., Lipinska, A.: Sialylation of intracellular proteins of thyroid lesions. Oncol. Rep. 17, 1237–1242 (2007)PubMedGoogle Scholar
  71. 71.
    Takeyama, H., Kyoda, S., Okamoto, T., Manome, Y., Watanabe, M., Kinoshita, S., Uchida, K., Sakamoto, A., Morikawa, T.: The expression of sialic fibronectin correlates with lymph node metastasis of thyroid malignant neoplasmas. Anticancer Res. 31, 1395–1398 (2011)PubMedGoogle Scholar
  72. 72.
    Vierbuchen, M., Schröder, S., Larena, A., Uhlenbruck, G., Fischer, R.: Native and sialic acid masked Lewis(a) antigen reactivity in medullary thyroid carcinoma. Distinct tumour-associated and prognostic relevant antigens. Virchows Arch. 424, 205–211 (1994)CrossRefPubMedGoogle Scholar
  73. 73.
    Kökoğlu, E., Uslu, E., Uslu, I., Hatemi, H.H.: Serum and tissue total sialic acid as a marker for human thyroid cancer. Cancer Lett. 46, 1–5 (1989)CrossRefPubMedGoogle Scholar
  74. 74.
    Jiang, M.S., Passaniti, A., Penno, M.B., Hart, G.W.: Adrenal carcinoma tumor progression and penultimate cell surface oligosaccharides. Cancer Res. 52(8), 2222–2227 (1992)PubMedGoogle Scholar
  75. 75.
    Dwivedi, C., Dixit, M., Hardy, R.E.: Plasma lipid-bound sialic acid alterations in neoplastic diseases. Experientia 46, 91–94 (1990)CrossRefPubMedGoogle Scholar
  76. 76.
    Trouillas, J., Daniel, L., Guigard, M.P., Tong, S., Gouvernet, J., Jouanneau, E., Jan, M., Perrin, G., Fischer, G., Tabarin, A., Rougon, G., Figarella-Branger, D.: Polysialylated neural cell adhesion molecules expressed in human pituitary tumors and related to extrasellar invasion. J. Neurosurg. 98, 1084–1093 (2003)CrossRefPubMedGoogle Scholar
  77. 77.
    Daniel, L., Trouillas, J., Renaud, W., Chevallier, P., Gouvernet, J., Rougon, G., Figarella-Branger, D.: Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors(spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res. 60, 80–85 (2000)PubMedGoogle Scholar
  78. 78.
    Ozyurt, E., Sönmez, H., Süer, S., Kökoğlu, E.: The prognostic importance of fibronectin and sialic acid levels in human pituitary adenomas. Cancer Lett. 100, 151–154 (1996)CrossRefPubMedGoogle Scholar
  79. 79.
    Kökoğlu, E., Süer, S., Ozyurt, E., Siyahhan, A., Sönmez, H.: Plasma fibronectin and sialic acid levels in various types of human brain tumors. Cancer Biochem. Biophys. 15, 35–40 (1995)PubMedGoogle Scholar
  80. 80.
    Shen, Y., Kohla, G., Lrhorfi, A.L., Sipos, B., Kalthoff, H., Gerwig, G.J., Kamerling, J.P., Schauer, R., Tiralongo, J.: O-acetylation and de-O-acetylation of sialic acids in human colorectal carcinoma. Eur. J. Biochem. 271, 281–290 (2004)CrossRefPubMedGoogle Scholar
  81. 81.
    Mann, B., Klussmann, E., Vandamme-Feldhaus, V., Iwersen, M., Hanski, M.L., Riecken, E.O., Buhr, H.J., Schauer, R., Kim, Y.S., Hanski, C.: Low O-acetylation of sialyl-Le(x) contributes to its overexpression in colon carcinoma metastases. Int. J. Cancer 72, 258–64 (1997)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Biological Sciences National Institute of Science Education and Research (NISER), under Dept of Atomic Energy (DAE), Government of India, Institute of Physics CampusBhubaneswarIndia

Personalised recommendations