Glycoconjugate Journal

, Volume 32, Issue 1–2, pp 39–47 | Cite as

Expression of ST3Gal, ST6Gal, ST6GalNAc and ST8Sia in human hepatic carcinoma cell lines, HepG-2 and SMMC-7721 and normal hepatic cell line, L-02

Original Article


We measured ST3Gal, ST6Gal, ST6GalNAc and ST8Sia expression in human hepatic carcinoma cell lines, HepG-2 and SMMC-7721 and normal hepatic cell line, L-02 to reveal the relationship between hepatic carcinoma cell lines sialyltransferases expression and cell membrane sialic acid sugar chains. Membrane sialic acid sugar chains in L-02, HepG-2 and SMMC-7721 cell lines were measured with lectin microarrays to find expression profiles. Expression of 20 sialyltransferases was measured with DNA microarray. qRT-PCR and Western blot were used to verify DNA microarrays data. Siaα 2-3Galβ1-3[Siaα2-6GalNAc]α-R and Siaα 2-6Gal/GalNAc sugar chains in hepatic carcinoma cell lines, HepG-2 and SMMC-7721 were upregulated, and 7differentially expressed sialyltransferases were captured. ST3Gal-IV and ST6Gal I were overexpressed and ST3Gal-I, ST3Gal-V, ST3Gal-VI, ST6GalNAcII and ST6GalNAcVI were downregulated in HepG-2 and SMMC-7721 cell Lines, compared with control cell line. ST6GalNAc-IV and ST8sia expressions were not detected. Other sialyltransferases were not different among cell lines. Results from qRT-PCR and Western blot were consistent with DNA microarray. Overexpression of ST3Gal-IV and ST6Gal I in HepG-2 and SMMC-7721 cell lines may correlate with upregulation of Siaα 2-3Galβ1-3[Siaα2-6GalNAc]α-R and Siaα 2-6Gal/GalNAc sugar chains on cell membranes.

Key words

Hepatic carcinoma Sialic acid sugar chain Sialyltransferase Lectin microarray DNA microarray 


  1. 1.
    Deng, W., Li, R., Ladisch, S.: Influence of cellular ganglioside depletion on tumor formation. J Natl Cancer Inst 92(11), 912–917 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Schattenberg, J.M., Schuchmann, M., Galle, P.R.: Cell death and hepatocarcinogenesis: dysregulation of apoptosis signaling pathways. J Gastroenterol Hepatol 26(1), 213–219 (2011)CrossRefPubMedGoogle Scholar
  3. 3.
    Miyagi, T., Wada, T., Yamaguchi, K., Hata, K.: Sialidase and malignancy: a minireview. Glycoconj J 20(3), 189–98 (2004)CrossRefPubMedGoogle Scholar
  4. 4.
    Dall’Olio, F., Malagolini, N., Trinchera, M., et al.: Sialosignaling: sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta 9, 2752–64(2014) (1840)Google Scholar
  5. 5.
    Ma, R.H., Wang, D.Q., Pan, Z.C., et al.: Different expression of ST3Gal and ST6Gal mRNA between mouse hepatocellular carcinoma cell lines. Life Sci Res 15(4), 323–327 (2011)Google Scholar
  6. 6.
    He, Q., Li, C.H., Pan, Z.C., et al.: Glycoprofiling investigation of hepatocellular carcinoma cell surface with lectin microarray. Prog Biochem Biophys 37(3), 269–277 (2010)CrossRefGoogle Scholar
  7. 7.
    Guo, C., Liu, Q.G., Zhang, L., et al.: Expression and clinical significance of p53, JunB and KAI1/CD82 in human hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 8(4), 389–96 (2009)PubMedGoogle Scholar
  8. 8.
    Lee, Y.C., Kurosawa, N., Hamamoto, T., et al.: Molecular cloning and expression of Galβ1, 3GalNAc α2, 3-sialyltransferase from mouse brain. Eur J Biochem 216(2), 377–385 (1993)CrossRefPubMedGoogle Scholar
  9. 9.
    Kono, M., Ohyama, Y., Lee, Y.C., et al.: Mouse βgalactoside α2,3- sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression. Glycobiology 7(4), 469–479 (1997)CrossRefPubMedGoogle Scholar
  10. 10.
    Kornfeld, S.: Diseases of abnormal protein glycosylation: an emerging area. J Clin Invest 101(7), 1293–1295 (1998)CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Storey, E.L., Anderson, G.J., Mack, U., et al.: Desialylated transferrin as a serological marker of chronic excessive alcohol ingestion. Lancet 1(8545), 1292–4 (1987)CrossRefPubMedGoogle Scholar
  12. 12.
    Ellies, L.G., Ditto, D., Levy, G.G., et al.: Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci U S A 99(15), 10042–10047 (2002)CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Hebert, D.N., Garman, S.C., Molinari, M.: The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrate as protein maturation and quality-control tags. Trends Cell Biol 15(14), 364–370 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Higai, K., Miyazaki, N., Azuma, Y., Matsumoto, K.: Interleukin-1beta induces sialyl Lewis X on hepatocellular carcinoma HuH-7 cells via enhanced expression of ST3Gal IV and FUT VI gene. FEBS Lett 580(26), 6069–6075 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    Chung, T.W., Kim, S.J., Choi, H.J., et al.: Ganglioside GM 3 inhibits VEGF/VEGFR-2-mediated angiogenesisDirect interaction of GM3 with VEGFR-2. Glycobiology 19(3), 229–239 (2009)CrossRefPubMedGoogle Scholar
  16. 16.
    Adriane Regina, T., Jose Nilson Dos, S., Kazuko, H., et al.: Ganglioside GM2-Tetraspanin CD82 complex inhibits met and its cross-talk with integrins, control of cell motility through Glycosynapse. J Biol Chem 282(11), 8123–33 (2007)CrossRefGoogle Scholar
  17. 17.
    Paulson, J.C., Colley, K.J.: Glycosyltransferases structure localization and control of cell type-specific glycosylation. J Biol Chem 264(30), 17615–8 (1989)PubMedGoogle Scholar
  18. 18.
    Souady, J., Hülsewig, M., Distler, U., et al.: Differences in CD75s-and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GalIand ST3GalVI in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 21(5), 584–94 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    Korekane, H., Matsumoto, A., Ota, F., et al.: Involvement of ST6Gal I in the biosynthesis of a unique human colon cancer biomarker candidate alpha2,6-sialylated blood group type 2H (ST2H)antigen. J Biochem 148(3), 359–370 (2010)CrossRefPubMedGoogle Scholar
  20. 20.
    Paulson, J.C., Colley, K.J.: Glycosyltransferases structure localization and control of cell type-specific glycosylation. J Biol Chem 264(30), 17615–17618 (1989)PubMedGoogle Scholar
  21. 21.
    Swindall, A.F., Bellis, S.L.: Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286(26), 22982–22990 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Milflores-Flores, L., Millán-Pérez, L., Santos-López, G., et al.: Characterization of P1 promoter activity of the beta-galactoside alpha 2,6-sialyltransferase I gene (siat 1) in cervical and hepatic cancer cell lines. J Biosci 37(2), 259–267 (2012)CrossRefPubMedGoogle Scholar
  23. 23.
    Dall’Olio, F., Chiricolo, M., D’Errico, A., et al.: Expression of beta-galactoside alpha2,6 sialyltransferase and of alpha2,6-sialylated glycoconjugates in normal human liver, hepatocarcinoma, and cirrhosis. Glycobiology 14(1), 39–49 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    Bouanene, H., Sahrawi, W., Mokni, M., et al.: Correlation between heterogeneous expression of Sialyltransferases and MUC16 in ovarian tumor tissues. Onkologie 34(4), 165–169 (2011)CrossRefPubMedGoogle Scholar
  25. 25.
    Marcos, N.T., Pinho, S., Grandela, C., et al.: Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res 64(19), 7050–7057 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    Senda, M., Ito, A., Tsuchida, A., et al.: Identification and expression of a sialyltransferase responsible for the synthesis of disialylgalactosylgloboside in normal and malignant kidney cells: downregulation of ST6GalNAcVI in renal cancers. Biochem J 402(3), 459–470 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Sewell, R., Bäckström, M., Dalziel, M., et al.: The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem 281(6), 3586–94 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    Schneider, F., Kemmner, W., Haensch, W., et al.: Overexpression of sialyltransferase CMP-sialic acid:Galbeta1,3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res 61(11), 4605–4611 (2001)PubMedGoogle Scholar
  29. 29.
    Kroes, R.A., He, H., Emmett, M.R., et al.: Overexpression of ST6GalNAcV, a ganglioside-specific alpha2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Natl Acad Sci U S A 107(28), 12646–12651 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Steenackers, A., Vanbeselaere, J., Cazet, A., et al.: Accumulation of unusual gangliosides G(Q3) and G(P3) in breast cancer cells expressing the G(D3) synthase. Molecules 17(8), 9559–9572 (2012)CrossRefPubMedGoogle Scholar
  31. 31.
    Dall’Olio, F., Malagolini, N., Trinchera, M., Chiricolo, M.: Sialosignaling:sialyltransferases as engines of self-fueling loops in cancer progression. Biochim Biophys Acta 9, 2752–2764(2014) (1840)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biochemistry, College of Basic MedicineShenyang Medical CollegeShenyangChina
  2. 2.Center of Laboratory TechnologyChina Medical UniversityShenyangChina
  3. 3.Biochip Center, College of Basic MedicineChina Medical UniversityShenyangChina
  4. 4.Key Laboratory of Cell Biology,Ministry of Education, Basic Medical SchoolChina Medical UniversityShenyangChina

Personalised recommendations