Skip to main content

Advertisement

Log in

Regulation of vascular endothelial growth factor by metabolic context of the cell

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Expression of vascular endothelial growth factor, major endothelial specific glycoprotein growth factor that promotes angiogenesis is regulated at transcriptional, post transcriptional and posttranslational levels. One of the key posttranslational modifications involved in regulating the angiogenic potential of VEGF is covalent modification involving polyADP ribosylation. Major factors contributing to the regulation of VEGF include factors relating to hypoxia, growth factors and cytokines and hormones. Apart from these, the metabolite status of the cell as sensed by various metabolite regulators can influence the angiogenic potential. Changes in the metabolite status of the cell occur during different conditions associated with excessive or insufficient angiogenesis contributing to pathology. Effect of metabolites, as exemplified by certain metabolites such as lactate, citrate, sarcosine, metabolites of arachidonic acid on angiogenesis through the regulation of expression of VEGF as well as its angiogenic potential through polyADP ribosylation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Karamysheva, A.F.: Mechanisms of Angiogenesis. Biochemistry (Moscow) ISSN 0006–297973, 751–762 (2008)

    Article  Google Scholar 

  2. Roskoski Jr., R.: Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit. Rev. Oncol. Hematol. 62, 179–213 (2007)

    Article  PubMed  Google Scholar 

  3. Alon, T., Hemo, I., Itin, A., Pe’er, J., Stone, J., Keshet, E.: Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1, 1024–1028 (1995)

    Article  PubMed  CAS  Google Scholar 

  4. Dvorak, H.F., Brown, L.F., Detmar, M., Dvorak, A.M.: Vascular permeability factor/vascular endothelial growth factor, Microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–1039 (1995)

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Barleon, B., Siemeister, G., Martiny-Baron, G., et al.: Vascular endothelial growth factor upregulates its receptor fms like tyrosine kinase (FLT-1). Cancer Res. 57, 5421–5425 (1997)

    PubMed  CAS  Google Scholar 

  6. Chua, C.C., Hamdy, R.C., Chua, B.H.: Upregulation of Vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic. Biol. Med. 25, 891–897 (1998)

    Article  PubMed  CAS  Google Scholar 

  7. Neufeld, G., Tessler, S., Gitay-Goren, H., et al.: Vascular endothelial growth factor and its receptors. Prog. Growth Factor Res. 5, 89–97 (1994)

    Article  PubMed  CAS  Google Scholar 

  8. Xiong, M., Elson, G., Legarda, D., Leibovich, S.J.: Production of vascular endothelial growth factor by murine macrophages: Regulation by hypoxia, lactate and inducible nitric oxide synthase pathway. Am. J. Pathol. 153, 587–598 (1998)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Peretz, D., Gitay-Goren, H., Safran, H., et al.: Glycosylation of VEGF is not required for its mitogenic activity. Biochem. Biophys. Res. Commun. 182, 1340–1347 (1992)

    Article  PubMed  CAS  Google Scholar 

  10. Guzmán-Hernández, M.L., Potter, G., Egervári, K., Kiss, J.Z., Balla, T.: Secretion of VEGF-165 has unique characteristics, including shedding from the plasma membrane. Mol. Biol. Cell 25, 1061–1072 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Caramelo, J.J., Garcia-Vallejo, J.J., Ouyang, J., Mesri, E.A., Junttila, M.R., Bais, C., Shipp, M.A., Salatino, M., Rabinovich, G.A.: Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors, Cell,156 (4),744-758. (2014)

    Google Scholar 

  12. Brandner, B., Kurkela, B., Vihko, P., Kungl, A.J.: Investigating the effect of VEGF glycosylation on GAG binding and protein folding. Biochem. Biophys. Res. Commun. 3, 836–839 (2006)

    Article  Google Scholar 

  13. Kumar, V.B.S., Viji, R.I., Kiran, M.S., Sudhakaran, P.R.: Endothelial cell response to lactate: Implication of PAR modification of VEGF. J. Cell. Physiol. 211, 477–485 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. Bu¨rkle, A.: Poly (ADP-ribose): The most elaborate metabolite of NADP. FEBS J. 272, 4576–4589 (2005).

  15. Kumar, V.B.S., Viji, R.I., Kiran, M.S., Sudhakaran, P.R.: Modulation of expression of LDH isoenzymes in endothelial cells by laminin: implications for angiogenesis. J. Cell. Biochem. 103, 1808–1825 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. Viji, R.I., Kumar, V.B., Kiran, M.S., Sudhakaran, P.R.: Angiogenic response of endothelial cells to heparin-binding domain of fibronectin. Int. J. Biochem. Cell Biol. 40, 215–226 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. Brune, B., Lapetina, E.G.: Activation of a cytosolic ADP-ribosyl transferase by nitric oxide generating agents. J. Biol. Chem. 264, 8455–8458 (1989)

    PubMed  CAS  Google Scholar 

  18. Fraisl, P., Mazzone, M., Schmidt, T., Carmeliet, P.: Regulation of Angiogenesis by Oxygen and Metabolism. Dev. Cell 16, 167–179 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. Bruick, R.K., McKnight, S.L.: A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001)

    Article  PubMed  CAS  Google Scholar 

  20. Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O’Rourke, J., Ratcliffe, P.J., et al.: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 107, 43–54 (2001).

  21. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., Kaelin Jr., W.G.: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Ratcliffe, P.J., et al.: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001)

    Article  PubMed  CAS  Google Scholar 

  23. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., Whitelaw, M.L.: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002)

    Article  PubMed  CAS  Google Scholar 

  24. Forsythe, J.A., Jiang, B.H., Iyer, N.V., et al.: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1996)

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Lassegue, B., Clempus, R.E.: Vascular NAD (P) H oxidases: specific features, expression, and regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R277–R297 (2003)

    PubMed  CAS  Google Scholar 

  26. Xia, C., Meng, Q., Liu, L., Rojanasakul, Y., Wang, X., Jiang, B.: Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 67, 10823–10830 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. Lin, J., Handschin, C., Spiegelman, B.M.: Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005)

    Article  PubMed  Google Scholar 

  28. St-Pierre, J., Lin, J., Krauss, S., Tarr, P.T., Yang, R., Newgard, C.B., Spiegelman, B.M.: Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J. Biol. Chem. 278, 26597–26603 (2003)

    Article  PubMed  CAS  Google Scholar 

  29. Arany, Z., Foo, S.Y., Ma, Y., Ruas, J.L., Bommi-Reddy, A., Rangwala, S.M., et al.: HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1a. Nature 451, 1008–1012 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. Finck, B.N., Kelly, D.P.: PGC-1 coactivators: inducible regulators ofenergy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Sun, K., Kusminski, C.M., Luby-Phelps, K., Spurgin, S.B., An, Y.A., Wang, Q.A., Holland, W.L., Scherer, P.E.: Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metab. 3, 474–483 (2014)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Long, Y.C., Zierath, J.R.: AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 116, 1776–1783 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Chatterjee, S., Heukamp, L.C., Siobal, M., Schöttle, J., Wieczorek, C., Ullrich, R.T., et al.: Tumor VEGF: VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J. Clin. Invest. 123, 1732–1740 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Ouchi, N., Shibata, R., Walsh, K.: AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ. Res. 96, 838–846 (2005)

    Article  PubMed  CAS  Google Scholar 

  35. Panigrahy, D., Kaipainen, A., Huang, S., Butterfield, C.E., Barnes, C.M., Fannon, M., Laforme, A.M., Chaponis, D.M., Folkman, J., Kieran, M.W.: PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc. Natl. Acad. Sci. U. S. A. 105, 985–990 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Piqueras, L., Reynolds, A.R., Hodivala-Dilke, K.M., Alfranca, A., Redondo, J.M., Hatae, T., Tanabe, T., Warner, T.D., Bishop-Bailey, D.: Activation of PPARβ/δ induces endothelial cell proliferation and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 63–69 (2007)

    Article  PubMed  CAS  Google Scholar 

  37. Wang, D., Wang, H., Guo, Y., Ning, W., Katkuri, S., Wahli, W., Desvergne, B., Dey, S.K., DuBois, R.N.: Crosstalk between peroxisome proliferator- activated receptor delta and VEGF stimulates cancer progression. Proc. Natl. Acad. Sci. U. S. A. 103, 19069–19074 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Barthel, A., Schmoll, D., Unterman, T.G.: FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183–189 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. Balaiya, S., Khetpal, V., Chalam, K.V.: Hypoxia initiates sirtuin 1-mediated vascular endothelial growth factor activation in choroidal endothelial cells through hypoxia inducible factor-2α. Mol. Vis. 18, 114–120 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Ron, D., Walter, P.: Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007)

    Article  PubMed  CAS  Google Scholar 

  41. Rutkowski, D.T., Kaufman, R.J.: That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem. Sci. 32, 469–476 (2007)

    Article  PubMed  CAS  Google Scholar 

  42. Hotamisligil, G.S.: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N.H., Arias, C., Lennon, C.J., Kluger, Y., Dynlacht, B.D.: XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. Ghosh, R., Lipson, K.L., Sargent, K.E., Mercurio, A.M., Hunt, J.S., Ron, D., Urano, F.: Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One 5, e9575 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jensen, J.A., Hunt, T.K., Schenenstuhl, H., Banda, M.J.: Effect of lactate, pyruvate and pH on secretion of angiogenesis and mitogenesis factor by macrophages. Lab Invest. 54, 574–578 (1986)

    PubMed  CAS  Google Scholar 

  46. Walenta, S., Salameh, A., Lyng, H., Evensen, J.F., Mitze, M., Rofstad, E.K., et al.: Correlation of high lactate level in head and neck tumors with incidence of metastasis. Am. J. Pathol. 150, 409–415 (1997)

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Sjostrand, M., Holmang, A., Strindberg, L., Lonnroth, P.: Estimations of muscle interstitial insulin, glucose and lactate in type 2 diabetic subjects. Am. J. Physiol. Endocrinol. Metab. 279, 1097–1103 (2000)

    Google Scholar 

  48. Gladden, L.B.: 2004. Lactate metabolism, a new paradigm for the third millennium. J. Physiol. 558,5–30 (2004).

  49. Crowther, M., Brown, N.J., Bishop, E.T., Lewis, C.E.: 2001. Micro environmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J. Leuk. Biol. 70, 478–490 (2001).

  50. Ghani, Q.P., Wagner, S., Hussain, M.Z.: Role of ADP ribosylation in wound repair: The contributions of Thomas K. Hunt, M.D. Wound Repair Regen. 11, 439–444 (2003).

  51. Lu, H., Forbes, R.A., Verma, A.: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 277, 23111–23115 (2002)

    Article  PubMed  CAS  Google Scholar 

  52. Hunt, T.K., Aslam, R., Hussain, Z., Beckert, S.: Lactate with oxygen, incites angiogenesis. Adv. Exp. Med. Biol. 614, 73–80 (2008)

    Article  PubMed  CAS  Google Scholar 

  53. Sudhakaran, P.R., Viji, R.I., Kiran, M.S., Sameer Kumar, V.B.: Endothelial cell-laminin interaction: modulation of LDH expression involves alpha6beta4 integrin-FAK-p38MAPK pathway. Glycoconj. J. 26, 697–704 (2009)

    Article  PubMed  CAS  Google Scholar 

  54. Wise, D.R., Ward, P.S., Shay, J.E.S., Cross, J.R., Grober, J.J., Sachdeva, U.M., Platt, J.M., DeMatteo, S.M.C., Thompson, C.B.: Hypoxia promotes isocitrate dehyrogenase dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U. S. A. 108, 19611–19616 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Briere, J.J., Favier, J., Gimenez-Roqueplo, A.P., Rustin, P.: Tricarboxylic acid cycle dysfunction as a cause of human disease and tumor formation. Am. J. Physiol. Cell Physiol. 29, C1114–1120 (2006)

    Article  Google Scholar 

  56. Binu, S., Soumya, S.J., Sudhakaran, P.R.: Metabolite control of angiogenesis: angiogenic effect of citrate. J. Physiol. Biochem. 69, 383–395 (2013)

    Article  PubMed  CAS  Google Scholar 

  57. Bharat, B.A., Gautam, S.: Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 72, 1605–1621 (2006)

    Article  Google Scholar 

  58. Nie, D., Honn, K.V.: Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cell. Mol. Life Sci. 59, 799–807 (2002)

    Article  PubMed  CAS  Google Scholar 

  59. Ding, X.Z., Hennig, R., Adrian, T.E.: Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer. Mol. Cancer 2, 10 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Soumya, S.J., Binu, S., Helen, A., Anil Kumar, K., Reddanna, P., Sudhakaran, P.R.: Effect of 15-lipoxygenase metabolites on angiogenesis: 15 (S)-HPETE is angiostatic and 15 (S)-HETE is angiogenic. Inflamm. Res. 61, 707–718 (2012)

    Article  PubMed  CAS  Google Scholar 

  61. Soumya, S.J., Binu, S., Helen, A., Reddanna, P., Sudhakaran, P.R.: 15 (S)-HETE-induced angiogenesis in adipose tissue is mediated through activation of PI3K/Akt/mTOR signaling pathway. Biochem. Cell Biol. 91, 498–505 (2013)

    Article  PubMed  CAS  Google Scholar 

  62. Viji, R.I., Sudhakaran, P.R.: Moduation of cyclooxygenase in endothelial cells by fibronectin: relevance to angiogenesis. J. Cell Biol. 105, 158–166 (2008)

    CAS  Google Scholar 

  63. Kumar, V.B., Sudhakaran, P.R.: Angiogenic effect of laminin involves modulation of cyclooxygenase-2 and prostaglandin levels. Exp. Biol. Med. 236, 44–51 (2011)

    Article  CAS  Google Scholar 

  64. Mueller, M.D., Vigne, J.L., Minchenko, A., Lebovic, D.I., Leitman, D.C., Taylor, R.N.: Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors α and β. PNAS 97, 10972–10977 (2000)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Drogat, B., Bouchecareilh, M., North, S., Petibois, C., Deleris, G., Chevet, E., Bikfalvi, A., Moenner, M.: Acute L-glutamine deprivation compromises VEGF-A upregulation in A549/8 human carcinoma cells. J. Cell. Physiol. 212, 463–472 (2007)

    Article  PubMed  CAS  Google Scholar 

  66. Marjon, P.L., Bobrovnikova-Marjon, E.V., Abcouwer, S.F.: Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol. Cancer 3, 4 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y., Ning, Y., Alam, G.N., Jankowski, B.M., Dong, Z., Nör, J.E., Polverini, P.J.: Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway. Neoplasia 15, 989–997 (2013)

    PubMed  PubMed Central  Google Scholar 

  68. Allen, R.H., Stabler, S.P., Lindenbaum, J.: Serum betane, N N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism. 42, 1448–1460 (1993)

    Article  PubMed  CAS  Google Scholar 

  69. Sreekumar, A., Poisson, L.M., Rajendran, T.M., Khan, A.P., Cao, Q., Yu, J., et al.: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Lucarelli, G., Fanetti, M., Larocca, A.M., Germinario, C.A., Rutigliano, M., Vavallo, A., et al.: Serum sarcosine increase the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/mL. Prostate 72, 1611–1621 (2012)

    Article  PubMed  CAS  Google Scholar 

  71. Sudhakaran, P.R., Binu, S., Soumya, S.J.: Effect of sarcosine on endothelial function relevant to angiogenesis. J. Canc. Res. Ther. (2014) http://www.cancerjournal.net/preprintarticle.asp?id=137945

  72. Dölle, C., Niere, M., Lohndal, E., Ziegler, M.: Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci. 67, 433–43 (2010)

    Article  PubMed  Google Scholar 

  73. Jwa, M., Chang, P.: PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat. Cell Biol. 14, 1223–30 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial assistance received from CSIR New Delhi to VBS Kumar, from UGC to Soumya SJ, from DST to Binu S and from KSCSTE to P R Sudhakaran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Sudhakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.B.S., Binu, S., Soumya, S.J. et al. Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J 31, 427–434 (2014). https://doi.org/10.1007/s10719-014-9547-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9547-5

Keywords

Navigation