Skip to main content
Log in

Antithrombin-binding oligosaccharides: structural diversities in a unique function?

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Heparin-antithrombin interaction is one of the most documented examples of heparin/protein complexes. The specific heparin sequence responsible for the binding corresponds to a pentasaccharide sequence with an internal 3-O-sulfated glucosamine residue. Moreover, the position of the pentasaccharide along the chain as well as the structure of the neighbor units affects the affinity to antithrombin. The development of separation and purification techniques, in conjunction with physico-chemical approaches (mostly NMR), allowed to characterize several structural variants of antithrombin-binding oligosaccharides, both in the free state and in complex with antithrombin. The article provides an overview of the studies that lead to the elucidation of the mechanism of interaction as well as acquiring new knowledge in heparin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lever, R., Mulloy, B., Page, C.P.: Heparin: a century of progress. Springer, Berlin (2012)

    Google Scholar 

  2. Guerrini, M., Guglieri, S., Naggi, A., Sasisekharan, R., Torri, G.: Low molecular weight heparins: structural differentiation by bidimensional nuclear magnetic resonance spectroscopy. Semin Thromb Hemost 33, 478–487 (2007)

    Article  PubMed  CAS  Google Scholar 

  3. Casu, B., Guerrini, M., Naggi, A., Torri, G., De-Ambrosi, L., Boveri, G., Gonella, S.: Differentiation of beef and pig mucosal heparins by NMR spectroscopy. Thromb Haemost 74, 1205–1209 (1995)

    PubMed  CAS  Google Scholar 

  4. Mulloy, B., Gray, E., Barrowcliffe, T.W.: Characterization of unfractionated heparin: comparison of materials from the last 50 years. Thromb Haemost 84, 1052–1056 (2000)

    PubMed  CAS  Google Scholar 

  5. Gray, E., Hogwood, J., Mulloy, B.: The anticoagulant and antithrombotic mechanisms of heparin. In: Lever, R., Mulloy, B., Page, C.P. (eds.) Heparin: a century of progress, pp. 281–306. Springer, Berlin (2012)

    Google Scholar 

  6. Lane, D.A., Denton, J., Flynn, A.M., Thunberg, L., Lindahl, U.: Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J 218, 725–732 (1984)

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Gray, E., Mulloy, B., Barrowcliffe, T.W.: Heparin and low-molecular-weight heparin. Thromb Haemost 99, 807–818 (2008)

    PubMed  CAS  Google Scholar 

  8. Huntington, J.A.: Serpin structure, function and dysfunction. J Thromb Haemost 9(Suppl. 1), 26–34 (2011)

    Article  PubMed  CAS  Google Scholar 

  9. Petitou, M., Barzu, T., Herault, J.P., Herbert, J.M.: A unique trisaccharide sequence in heparin mediates the early step of antithrombin III activation. Glycobiology 7, 323–327 (1997)

    Article  PubMed  CAS  Google Scholar 

  10. Jin, L., Abrahams, J.P., Skinner, R., Petitou, M., Pike, R.N., Carrell, R.W.: The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A 94, 14683–14688 (1997)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. McCoy, A.J., Pei, X.Y., Skinner, R., Abrahams, J.P., Carrell, R.W.: Structure of beta-antithrombin and the effect of glycosylation on antithrombin’s heparin affinity and activity. J Mol Biol 326, 823–833 (2003)

    Article  PubMed  CAS  Google Scholar 

  12. Petitou, M., van Boeckel, C.A.: A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed Engl 43, 3118–3133 (2004)

    Article  PubMed  CAS  Google Scholar 

  13. Hricovini, M., Guerrini, M., Bisio, A., Torri, G., Petitou, M., Casu, B.: Conformation of heparin pentasaccharide bound to antithrombin III. Biochem J 359, 265–272 (2001)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Johnson, D.J., Li, W., Adams, T.E., Huntington, J.A.: Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. EMBO J 25, 2029–2037 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. van Boeckel, C.A.A., Petitou, M.: The unique antithrombin III binding domain of heparin: a lead to new synthetic antithrombotics. Angew Chem Int Ed Engl 32, 1671–1818 (1993)

    Article  Google Scholar 

  16. Desai, U.R.: New antithrombin-based anticoagulants. Med Res Rev 24, 151–181 (2004)

    Article  PubMed  CAS  Google Scholar 

  17. Loganathan, D.H., Wang, M., Mallis, L.M., Linhardt, R.J.: Structural variation in the antithrombin III binding site region and its occurrence in heparin from different sources. Biochemistry 29, 4362–4368 (1990)

    Article  PubMed  CAS  Google Scholar 

  18. Linhardt, R.J., Gunay, N.: Production and chemical processing of low molecular weight heparins. Semin Thromb Hemost 25, 5–16 (1999)

    Article  PubMed  CAS  Google Scholar 

  19. Casu, B., Torri, G.: Structural characterization of low-molecular weight heparins Semin. Thromb Hemost 25, 17–26 (1999)

    Article  CAS  Google Scholar 

  20. Mourier, P.A., Viskov, C.: Chromatographic analysis and sequencing approach of heparin oligosaccharides using cetyltrimethylammonium dynamically coated stationary phases. Anal Biochem 332, 299–313 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. Bisio, A., Vecchietti, D., Citterio, L., Guerrini, M., Raman, R., Bertini, S., Eisele, G., Naggi, A., Sasisekharan, R., Torri, G.: Structural features of low molecular weight heparins affecting their affinity to antithrombin. Thromb Haemost 102, 865–873 (2009)

    PubMed  CAS  Google Scholar 

  22. Thacker, B.E., Xu, D., Lawrence, R., Esko, J.D.: Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 35, 60–72 (2013)

    Article  PubMed  Google Scholar 

  23. Xu, Y., Masuko, S., Takieddin, M., Xu, H., Liu, R., Jing, J., Mousa, S.A., Linhardt, R.J., Liu, J.: Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334, 498–501 (2011)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Xu, Y., Pempe, E.H., Liu, J.: Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J Biol Chem 287, 29054–29061 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Fu, L., Zhang, F., Li, G., Onishi, A., Bhaskar, U., Sun, P., Linhardt, R.J.: Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration. J Pharm Sci 103, 1375–1383 (2014)

  26. Tyler-Cross, R., Sobel, M., McAdory, L.E., Harris, R.B.: Structure–function relations of antithrombin III-heparin interactions as assessed by biophysical and biological assays and molecular modeling of peptide–pentasaccharide-docked complexes. Arch Biochem Biophys 15, 206–213 (1996)

    Article  Google Scholar 

  27. Lindahl, U., Thunberg, L., Bäckstrőm, G., Riesenfeld, J., Nordling, K., Bjork, I.: Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem 259, 12368–12376 (1984)

    PubMed  CAS  Google Scholar 

  28. Toida, T., Hileman, R.E., Smith, A.E., Vlahova, P.I., Linhardt, R.J.J.: Enzymatic preparation of heparin oligosaccharides containing antithrombin III binding site. J Biol Chem 271, 32040–32047 (1996)

    Article  PubMed  CAS  Google Scholar 

  29. Choay, J., Petitou, M., Lormeau, J.C., Sinaÿ, P., Casu, B., Gatti, G.: Structure-activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun 116, 492–499 (1983)

    Article  PubMed  CAS  Google Scholar 

  30. Chen, J., Jones, C.L., Liu, J.: Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem Biol 14, 986–993 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. Guerrini, M., Guglieri, S., Casu, B., Torri, G., Mourier, P., Boudier, C., Viskov, C.: Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction. Evidence for very high affinity induced by an unusual glucuronic acid residue. J Biol Chem 283, 26662–26675 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Harenberg, J., Walenga, J., Torri, G., Dahl, O.E., Drouet, L., Fareed, J.J.: Update in the recommendations on biosimilar low-molecular weight heparin from the Scientific Subcommitee on Control of Anticoagulation of the International Society of Thrombosis and Haemostasis. Thromb Haemost 334, 1421–1425 (2013)

    Article  Google Scholar 

  33. Whisstock, J.C., Pike, R.N., Jin, L., Skinner, R., Pei, X.Y., Carrell, R.W., Lesk, A.M.: Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparindagger. J Mol Biol 301, 1287–1305 (2000)

    Article  PubMed  CAS  Google Scholar 

  34. Desai, U.R., Petitou, M., Bjőrk, I., Olson, S.T.: Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J Biol Chem 273, 7478–7487 (1998)

    Article  PubMed  CAS  Google Scholar 

  35. Hricovíni, M., Guerrini, M., Bisio, A., Torri, G., Naggi, A., Casu, B.: Active conformations of glycosaminoglycans.NMR determination of the conformation of heparin sequences complexed with antithrombin and fibroblast growth factors in solution. Semin Thromb Hemost 28, 325–333 (2002)

    Article  PubMed  Google Scholar 

  36. Ferro, D.R., Provasoli, A., Ragazzi, M., Torri, G., Casu, B., Gatti, G., Jacquinet, J.C., Sinay, P., Petitou, M., Choay, J.: Evidence for conformational equilibrium of the sulfated l-iduronate residue in heparin and in synthetic heparin mono- and oligosaccharides: NMR and force-field studies. J Am Chem Soc 108, 6773–6778 (1986)

    Article  CAS  Google Scholar 

  37. Ragazzi, M., Ferro, D.R., Perly, B., Sinay, P., Petitou, M., Choay, J.: Conformation of the pentasaccharide corresponding to the binding site of heparin for antithrombin III. Carbohydr Res 165, c1–c5 (1987)

    Article  PubMed  CAS  Google Scholar 

  38. Casu, B., Petitou, M., Provasoli, M., Sinaÿ, P.: Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. Trends Biochem Sci 13, 221–225 (1988)

    Article  PubMed  CAS  Google Scholar 

  39. Raman, R., Sasisekharan, V., Sasisekharan, R.: Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol 12, 267–277 (2005)

    Article  PubMed  CAS  Google Scholar 

  40. Mulloy, B., Forster, M.J., Jones, C., Davies, D.B.: N.M.R. and molecular-modelling studies of the solution conformation of heparin. Biochem J 293, 849–858 (1993)

    PubMed  CAS  PubMed Central  Google Scholar 

  41. DiGabriele, A.D., Lax, I., Chen, D.I., Svahn, C.M., Jaje, M., Schlessinger, J., Hendrickson, W.A.: Structure of a heparin-linked biologically-active dimer of fibroblast growth factor. Nature 393, 812–817 (1998)

    Article  PubMed  CAS  Google Scholar 

  42. Guerrini, M., Hricovini, M., Torri, G.: Interaction of heparins with fibroblast growth factors: conformational aspects. Curr Pharm Des 13, 2045–2056 (2007)

    Article  PubMed  CAS  Google Scholar 

  43. Nieto, L., Canales, A., Fernández, I.S., Santillana, E., González-Corrochano, R., Redondo-Horcajo, M., Javier Cañada, F., Nieto, P., Martín-Lomas, M., Giménez-Gallego, G., Jiménez-Barbero, J.: Heparin modulates the mitogenic activity of fibroblast growth factor by inducing dimerization of its receptor. a 3D view by using NMR. Chem Biol Chem 14, 1732–1744 (2013)

    Article  CAS  Google Scholar 

  44. Guerrini, M., Elli, S., Gaudesi, D., Torri, G., Casu, B., Mourier, P., Herman, F., Boudier, C., Lorenz, M., Viskov, C.: Effects on molecular conformation and anticoagulant activities of 1,6-anhydrosugars at the reducing terminal of antithrombin-binding octasaccharides isolated from low-molecular-weight heparin enoxaparin. J Med Chem 53, 8030–8040 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. Guerrini, M., Elli, S., Mourier, P., Rudd, T.R., Gaudesi, D., Casu, B., Boudier, C., Torri, G., Viskov, C.: An unusual antithrombin-binding heparin octasaccharide with an additional 3-O-sulfated glucosamine in the active pentasaccharide sequence. Biochem J 449, 343–351 (2013)

    Article  PubMed  CAS  Google Scholar 

  46. Viskov, C., Elli, S., Urso, E., Gaudesi, D., Mourier, P., Herman, F., Boudier, C., Casu, B., Torri, G., Guerrini, M.: Heparin dodecasaccharide containing two antithrombin-binding pentasaccharides: structural features and biological properties. J Biol Chem 288, 25895–25907 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Yu, F., Roy, S., Arevalo, E., Schaeck, J., Wang, J., Holte, K., Duffner, J., Gunay, N.S., Capila, I., Kaundinya, G.V.: Characterization of heparin–protein interaction by saturation transfer difference (STD) NMR. Anal Bioanal Chem 406, 3079–3089 (2014)

    Article  PubMed  CAS  Google Scholar 

  48. Moseley, H.N.B., Curto, E.V., Krishna, N.R.: Complete relaxation and conformational exchange matrix (CORCEMA) analysis of NOESY spectra of interacting systems; two-dimensional transferred NOESY. J Magn Reson 108, 243–261 (1995)

    Article  CAS  Google Scholar 

  49. Belzar, K.J., Dafforn, T.R., Petitou, M., Carrell, R.W., Huntington, J.A.: The effect of a reducing-end extension on pentasaccharidebinding by antithrombin. J Biol Chem 275, 8733–8741 (2000)

    Article  PubMed  CAS  Google Scholar 

  50. Mayer, M., Meyer, B.: Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38, 1784–1788 (1999)

    Article  CAS  Google Scholar 

  51. Choay, J., Lormeau, J.C., Petitou, M., Sinaÿ, P., Fareed, J.: Structural studies on a biologically active hexasaccharide obtained from heparin. Ann N Y Acad Sci 370, 644–649 (1981)

    Article  PubMed  CAS  Google Scholar 

  52. Mourier, P., Viskov, C.: US Pat. 2005/0119477 A1, 2005. Chem Abstr 142, 89363 (2005)

    Google Scholar 

  53. Mascellani, G., Guerrini, M., Torri, G., Liverani, L., Spelta, F., Bianchini, P.: Characterization of di- and monosulfated, unsaturated heparin disaccharides with terminal N-sulfated 1,6-anhydro- β-D-glucosamine or N-sulfated 1,6-anhydro β-D-mannosamine residues. Carbohydr Res 342, 835–842 (2007)

    Article  PubMed  CAS  Google Scholar 

  54. Mourier, P., and Viskov, C.: Polysaccharides comprising two antithrombin III-binding sites, Preparation thereof and use thereof as antithrombotic medicaments. WO 2012/140580 A1 (2012)

  55. Mourier, P.A.J., Guichard, O.J., Herman, F., Viskov, C.: Isolation of a pure octadecasaccharide with anti-thrombin activity from a ultralow-molecular weight heparin. Anal Biochem 453, 7–15 (2014)

    Article  PubMed  CAS  Google Scholar 

  56. van Boeckel, C.A.A., van Beetz, T., Aelst, S.F.: Synthesis of a potent antithrombin activating pentasaccharide: a new heparin-like fragment containing two 3-O-sulphated glucosamines. Tetrahedron Lett 29, 803–806 (1988)

    Article  Google Scholar 

  57. Moon, A.F., Xu, Y., Woody, S.M., Krahn, J.M., Linhardt, R.J., Liu, J., Pedersen, L.C.: Dissecting the substrate recognition of 3-O-sulfotransferase for the biosynthesis of anticoagulant heparin. Proc Natl Acad Sci U S A 109, 5265–5270 (2012)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Benito Casu and Giuseppe Cassinelli for their critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Guerrini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrini, M., Mourier, P.A.J., Torri, G. et al. Antithrombin-binding oligosaccharides: structural diversities in a unique function?. Glycoconj J 31, 409–416 (2014). https://doi.org/10.1007/s10719-014-9543-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9543-9

Keywords

Navigation