Abstract
SBL/RC-RNase was originally isolated from frog (Rana catesbeiana) oocytes and purified as a novel sialic acid-binding lectin (SBL) that displayed strong anti-cancer activity. SBL was later shown to be identical to a ribonuclease (RC-RNase) from oocytes of the same species. The administration of SBL/RC-RNase induced apoptosis (with nuclear condensation and DNA fragmentation) in mouse leukemia P388 cells but did not kill umbilical vein endothelial or fibroblast cells derived from normal tissues. The cytotoxic activity of SBL/RC-RNase was inhibited by desialylation of P388 cells and/or the co-presence of free bovine submaxillary mucin. FACS analysis showed that SBL/RC-RNase was incorporated into cells after attachment to cholesterol-rich microdomains. Addition of the cholesterol remover methyl-β-cyclodextrin reduced SBL/RC-RNase-induced apoptosis. Apoptosis occurred through the caspase-3 pathway following activation of caspase-8 by SBL/RC-RNase. A heat shock cognate protein (Hsc70) and a heat shock protein (Hsp70) (each 70 kDa) on the cell membrane were shown to bind to SBL/RC-RNase by mass spectrometric and flow cytometric analyses. Quercetin, an inhibitor of Hsc70 and Hsp70, significantly reduced SBL/RC-RNase-induced apoptosis. Taken together, our findings suggest that sialyl-glycoconjugates present in cholesterol-rich microdomains form complexes with Hsc70 or Hsp70 that act as triggers for SBL/RC-RNase to induce apoptosis through a pathway involving the activation of caspase-3 and caspase-8.
This is a preview of subscription content, access via your institution.







Abbreviations
- FACS:
-
Fluorescence-activated cell sorting
- GSL:
-
Glycosphingolipid
- HSC70:
-
70-kDa heat shock cognate protein
- HSP70:
-
70-kDa heat shock protein
- MβCD:
-
Methyl β-D-cyclodextrin
- NHDF:
-
Normal human epidermal fibroblast
- NHEM:
-
Normal human epidermal melanocyte
- NHEK:
-
Normal human keratinocyte cell
- RC-RNase:
-
Rana catesbeiana ribonuclease
- SBL:
-
Sialic acid-binding lectin
References
Nitta, K., Takayanagi, G., Kawauchi, H., Hakomori, S.: Isolation and characterization of Rana catesbeiana lectin and demonstration of the lectin-binding glycoprotein of rodent and human tumor cell membranes. Cancer Res. 47, 4877–4883 (1987)
Titani, K., Takio, K., Kuwada, M., Nitta, K., Sakakibara, F., Kawauchi, H., Takayanagi, G., Hakomori, S.: Amino acid sequence of sialic acid binding lectin from frog (Rana catesbeiana) eggs. Biochemistry 26, 2189–2194 (1987)
Nitta, R., Katayama, N., Okabe, Y., Iwama, M., Watanabe, H., Abe, Y., Okazaki, T., Ohgi, K., Irie, M.: Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver. J. Biochem. 106, 729–735 (1989)
Nitta, K., Oyama, F., Oyama, R., Sekiguchi, K., Kawauchi, H., Takayanagi, Y., Hakomori, S., Titani, K.: Ribonuclease activity of sialic acid-binding lectin from Rana catesbeiana eggs. Glycobiology 3, 37–45 (1993)
Nitta, K., Ozaki, K., Tsukamoto, Y., Furusawa, S., Ohkubo, Y., Takimoto, H., Murata, R., Hosono, M., Hikichi, N., Sasaki, K., Kawauchi, H., Takayanagi, Y., Tsuiki, S., Hakomori, S.: Characterization of a Rana catesbeiana lectin-resistant mutant of leukemia P388 cells. Cancer Res. 54, 928–934 (1994)
Nitta, K., Ozaki, K., Tsukamoto, Y., Hosono, M., Ogawa-Konno, Y., Kawauchi, H., Takayanagi, Y., Tsuiki, S., Hakomori, S.: Catalytic lectin (leczyme) from bullfrog (Rana catesbeiana) eggs. Int. J. Oncol. 9, 19–23 (1996)
Nitta, K.: Leczyme. Methods Enzymol. 341, 368–374 (2001)
Wu, Y.N., Mikulski, S.M., Adelt, W., Rybak, S.M., Youle, R.J.: A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J. Biol. Chem. 268, 10668–10693 (1993)
Ardelt, W., Mikulski, S.M., Shogen, K.: Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J. Biol. Chem. 266, 245–251 (1991)
Liao, Y.D.: A pyrimidine-guanine sequence-specific ribonuclease from Rana catesbeiana (bullfrog) oocytes. Nucleic Acids Res. 20, 1371–1377 (1992)
Liao, Y.D., Wang, J.J.: Yolk granules are the major compartment for bullfrog (Rana catesbeiana) oocyte-specific ribonuclease. Eur. J. Biochem. 222, 215–220 (1994)
Liao, Y.D., Huang, H.C., Chan, H.J., Kuo, S.J.: Large-scale preparation of a ribonuclease from Rana catesbeiana (bullfrog) oocytes and characterization of its specific cytotoxic activity against tumor cells. Protein Expr. Purif. 7, 194–202 (1996)
Goparaju, C.M., Blasberg, J.D., Volinia, S., Palatini, J., Ivanov, S., Donington, J.S., Croce, C., Yang, H., Pass, H.I.: Onconase mediated NFKβ downregulation in malignant pleural mesothelioma. Oncogene 30, 2767–2777 (2011)
Nasu, M., Carbone, M., Gaudino, G., Ly, B.H., Bertino, P., Shimizu, D., Morris, P., Pass, H.I., Yang, H.: Ranpirnase interferes with NF-κB pathway pathway and MMP9 activity, inhibiting malignant mesothelioma cell invasiveness and xenograft growth. Genes Cancer 2, 576–584 (2011)
Hu, C.C., Tang, C.H., Wang, J.J.: Caspase activation in response to cytotoxic Rana catesbeiana ribonuclease in MCR-7 cells. FEBS Lett. 503, 65–68 (2001)
Tseng, H.H., Yu, Y.L., Chen, Y.L.S., Chen, J.H., Chou, C.L., Kou, T.Y., Wang, J.J., Lee, M.C., Huang, T.H., Chen, M.H.C., Yiang, G.T.: RC-RNase-induced cell death in estrogen receptor positive breast tumor through down-regulation of Bcl-2 and estrogen receptor. Oncol. Rep. 25, 849–853 (2011)
Chang, C.F., Chen, C., Chen, Y.C., Hom, K., Huang, R.F., Huang, T.H.: The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). J. Mol. Biol. 283, 231–244 (1998)
Liu, J.H., Liao, Y.D., Sun, Y.J.: Crystallization and preliminary X-ray diffraction analysis of cytotoxic ribonucleases from bullfrog Rana catesbeiana. Acta Crystallogr. D Biol. Crystallogr. 57, 1697–1699 (2001)
Turcotte, R.F., Lavis, L.D., Raines, R.T.: Onconase cytotoxicity relies on the distribution of its positive charge. FEBS J. 276, 3846–3857 (2009)
Sundless, N.K., Raines, R.T.: Arginine residues are more effective than lysine residues in eliciting the cellular uptake of onconase. Biochemistry 50, 10293–10299 (2011)
Tennant, J.R.: Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2, 685–694 (1964)
Vyas, H.K., Pal, R., Vishwakarma, R., Lohiya, N.K., Talwar, G.P.: Selective killing of leukemia and lymphoma cells ectopically expressing hCGβ by a conjugate of curcumin with an antibody against hCGβ subunit. Oncology 76, 101–111 (2009)
Pepper, C., Thomas, A., Tucker, H., Hoy, T., Bentley, P.: Flow cytometric assessment of three different methods for the measurement of in vivo apoptosis. Leuk. Res. 22, 439–444 (1998)
Sugawara, S., Hosono, M., Ogawa, Y., Takayanagi, M., Nitta, K.: Catfish egg lectin causes rapid activation of multidrug resistance 1 P-glycoprotein as a lipid translocase. Biol. Pharm. Bull. 28, 434–441 (2005)
Sugawara, S., Kawano, T., Omoto, T., Hosono, M., Tatsuta, T., Nitta, K.: Binding of Silurus asotus lectin to Gb3 on Raji cells causes disappearance of membrane-bound form of HSP70. Biochim. Biophys. Acta 1790, 101–109 (2009)
Gniadecki, R., Christoffersen, N., Wulf, H.C.: Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: importance in the baseline and UVA-induced generation of reactive oxygen species. J. Investig. Dermatol. 118, 582–588 (2001)
Hakomori, S., Handa, K.: Interaction of glycosphingolipids with signal transducers and membrane proteins in glycosphingolipid-enriched microdomains. Methods Enzymol. 363, 191–207 (2003)
Laemmli, U.K.: Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)
Matsudaira, P.: Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10035–10038 (1987)
Krajewski, S., Zapata, J.M., Reed, J.C.: Detection of multiple antigens on western blots. Anal. Biochem. 236, 221–228 (1996)
Hamaguchi, A., Suzuki, E., Murayama, K., Fujimura, T., Hikita, T., Iwabuchi, K., Handa, K., Withers, D.A., Casters, S.C., Fu, H., Hakomori, S.: Sphingosine-denependent protein kinase-1, directed to 14-3-3, is identified as the kinase domain of protein kinase Cd. J. Biol. Chem. 278, 41557–41565 (2003)
Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)
Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., Takayanagi, Y., Titani, K.: Amino acid sequence of a lectin from Japanese frog (Rana japonica) eggs. J. Biochem. 108, 139–143 (1990)
Morawski, M., Hartlage-Rubsamen, M., Jager, C., Waniek, A., Schilling, S., Schwab, C., McGeer, P.L., Arendt, T., Demuth, H.U., Rossner, S.: Distinct glutaminyl cyclase expression in Edinger-Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Aβ pathology in Alzheimer’s disease. Acta Neuropathol. 120, 195–207 (2010)
Chao, T.Y., Lavis, L.D., Raines, R.T.: Cellular uptake of ribonuclease A relies an anionic glycans. Biochemistry 49, 10666–10673 (2010)
Su, X., Sykes, J.B., Ao, L., Raeburn, C.D., Fullerton, D.A., Meng, X.: Extracellular heat shock cognate protein 70 induces cardiac functional tolerance to endotoxin: differential effect on TNF-α and ICAM-1 levels on heart tissue. Cytokine 51, 60–66 (2010)
Young, J.C., Barral, J.M., Hartl, F.U.: More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28, 541–547 (2003)
Zou, N., Ao, L., Cleveland Jr., J.C., Yang, X., Su, X., Cai, G.Y., Banerjee, A., Fullerton, D.A., Meng, X.: Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 294, H2805–H2813 (2008)
Harada, Y., Sato, C., Kitajima, K.: Complex formation of 70 kDa heat shock protein with acidic glycolipids and phospholipids. Biochem. Biophys. Res. Commun. 353, 655–660 (2007)
Maehashi, E., Sato, C., Ohta, K., Harada, Y., Matsuda, T., Hirohashi, N., Lennarz, W.J., Kitajima, K.: Identification of the sea urchin 350-kDa sperm-binding protein as a new sialic acid-binding lectin that belongs to the heat shock protein 110 family: implication of its binding to gangliosides in sperm lipid rafts in fertilization. J. Biol. Chem. 278, 42050–42057 (2003)
Hatakeyama, S., Sugihara, K., Nakayama, J., Akama, T.O., Wong, S.M., Kawashima, H., Zhang, J., Smith, D.F., Ohyama, C., Fukuda, M., Fukuda, M.N.: Identification of mRNA splicing factors as the endothelial receptor for carbohydrate-dependent lung colonization of cancer cells. Proc. Natl. Acad. Sci. U. S. A. 106, 3095–3100 (2009)
Haudek, K.C., Patterson, R.J., Wang, J.L.: SP proteins and galectins: what’s in a name? Glycobiology 20, 1199–1207 (2010)
Haudek, K.C., Spronk, K.J., Voss, P.G., Patterson, R.J., Wang, J.L., Arnoys, E.J.: Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim. Biophys. Acta 1800, 181–189 (2010)
Acknowledgments
This study was supported in part by Grants-In-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Japan, the Japan Society for the Promotion of Science (JSPS) and Nagasaki International University. The authors are grateful to Dr. Stephen Anderson for English editing of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Y. Ogawa and S. Sugawara made equal contributions to the study and are both considered as first authors.
Rights and permissions
About this article
Cite this article
Ogawa, Y., Sugawara, S., Tatsuta, T. et al. Sialyl-glycoconjugates in cholesterol-rich microdomains of P388 cells are the triggers for apoptosis induced by Rana catesbeiana oocyte ribonuclease. Glycoconj J 31, 171–184 (2014). https://doi.org/10.1007/s10719-013-9513-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10719-013-9513-7