Skip to main content

Advertisement

Log in

Individual profiles of free ceramide species and the constituent ceramide species of sphingomyelin and neutral glycosphingolipid and their alteration according to the sequential changes of environmental oxygen content in human colorectal cancer Caco-2 cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We previously performed a systematic analysis of free ceramide (Cers) species, the constituent ceramide species of sphingomyelins and neutral glycosphingolipids (NGSLs) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with high-energy collision-induced dissociation. As a result, distinct species differences were found among Cers, sphingomyelins and NGSLs in the kidneys. Using this method, we investigated various sphingolipid species from human colon cancer Caco-2 cells as well as the influence of environmental oxygen on these species in detail. Unexpectedly, even in normoxia, all Cers species were composed of dihydrosphingosine (d18:0) and non-hydroxy fatty acid (NFA), and 34 % of sphingomyelins were composed of dihydrosphingomyelins with NFA. In contrast, major constituent ceramide species of NGSLs were composed of the usual long-chain base of sphingosine (d18:1) and hydroxy fatty acid (HFA). When the cells were cultured under hypoxic condition for 3 days, all the Cers and nearly 80 % of the sphingomyelins were dihydrosphingolipids composed of d18:0-NFAs, but a significant proportion of d18:1-HFAs still remained in the NGSLs. When the cells were transferred from conditions of hypoxia to normoxia again (reoxygenation), Cer species composed of d18:1-NFAs, which were not found in Cers under the original normoxic conditions, appeared. Such Cers were probably synthesized as precursors for the constituent ceramides of sphingomyelins and NGSLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Merrill Jr., A.H.: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 111, 6387–6422 (2011)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Bielawski, J., Pierce, J.S., Snider, J., Rembiesa, B., Szulc, Z.M., Bielawska, A.: Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol. Biol. 579, 443–467 (2009)

    Article  PubMed  CAS  Google Scholar 

  3. Haynes, C.A., Allegood, J.C., Park, H., Sullards, M.C.: Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J. Chromatogr., B 877, 2696–2708 (2009)

    Article  CAS  Google Scholar 

  4. Grösch, S., Schiffmann, S., Geisslinger, G.: Chain length-specific properties of ceramides. Prog. Lipid Res. 51, 50–62 (2012)

    Article  PubMed  CAS  Google Scholar 

  5. Buschard, K., Blomqvist, M., Månsson, J.E., Fredman, P., Juhl, K., Gromada, J.: C16:0 sulfatide inhibits insulin secretion in rat beta-cells by reducing the sensitivity of KATP channels to ATP inhibition. Diabetes 55, 2826–2834 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. Iwabuchi, K., Prinetti, A., Sonnino, S., Mauri, L., Kobayashi, T., Ishii, K., Kaga, N., Murayama, K., Kurihara, H., Nakayama, H., Yoshizaki, F., Takamori, K., Ogawa, H., Nagaoka, I.: Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J. 25, 357–374 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. Karahatay, S., Thomas, K., Koybasi, S., Senkal, C.E., Elojeimy, S., Liu, X., Bielawski, J., Day, T.A., Gillespie, M.B., Sinha, D., Norris, J.S., Hannun, Y.A., Ogretmen, B.: Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett. 256, 101–111 (2007)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Signorelli, P., Munoz-Olaya, J.M., Gagliostro, V., Casas, J., Ghidoni, R., Fabriàs, G.: Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett. 282, 238–243 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. Fabrias, G., Muñoz-Olaya, J., Cingolani, F., Signorelli, P., Casas, J., Gagliostro, V., Ghidoni, R.: Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena. Prog. Lipid Res. 51, 82–94 (2012)

    Article  PubMed  CAS  Google Scholar 

  10. Deeley, J.M., Hankin, J.A., Friedrich, M.G., Murphy, R.C., Truscott, R.J., Mitchell, T.W., Blanksby, S.J.: Sphingolipid distribution changes with age in the human lens. J. Lipid Res. 51, 2753–2760 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Hama, H.: Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta 1801, 405–414 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Tanaka, K., Yamada, M., Tamiya-Koizumi, K., Kannagi, R., Aoyama, T., Hara, A., Kyogashima, M.: Systematic analyses of free ceramide species and ceramide species comprising neutral glycosphingolipids by MALDI-TOF MS with high-energy CID. Glycoconj J. 28, 67–87 (2011)

    Article  PubMed  CAS  Google Scholar 

  13. Devlin, C.M., Lahm, T., Hubbard, W.C., Van Demark, M., Wang, K.C., Wu, X., Bielawska, A., Obeid, L.M., Ivan, M., Petrache, I.: Dihydroceramide-based response to hypoxia. J. Biol. Chem. 286, 38069–38078 (2011)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Saito, T., Hakomori, S.I.: Quantitative isolation of total glycosphingolipids from animal cells. J. Lipid Res. 12, 257–259 (1971)

    PubMed  CAS  Google Scholar 

  15. Kyogashima, M., Tadano-Aritomi, K., Aoyama, T., Yusa, A., Goto, Y., Tamiya-Koizumi, K., Ito, H., Murate, T., Kannagi, R., Hara, A.: Chemical and apoptotic properties of hydroxy-ceramides containing long-chain bases with unusual alkyl chain lengths. J. Biochem. 144, 95–106 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. Kyogashima, M., Tamiya-Koizumi, K., Ehara, T., Li, G., Hu, R., Hara, A., Aoyama, T., Kannagi, R.: Rapid demonstration of diversity of sulfatide molecular species from biological materials by MALDI-TOF MS. Glycobiology 16, 719–728 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. Szulc, Z.M., Bai, A., Bielawski, J., Mayroo, N., Miller, D.E., Gracz, H., Hannun, Y.A., Bielawska, A.: Synthesis, NMR characterization and divergent biological actions of 20-hydroxy-ceramide/dihydroceramide stereoisomers in MCF7 cells. Bioorg. Med. Chem. 18, 7565–7579 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Rylova, S.N., Somova, O.G., Zubova, E.S., Dudnik, L.B., Kogtev, L.S., Kozlov, A.M., Alesenko, A.V., Dyatlovitskaya, E.V.: Content and structure of ceramide and sphingomyelin and sphingomyelinase activity in mouse hepatoma-22. Biochemistry (Mosc). 64, 437–441 (1999)

    PubMed  CAS  Google Scholar 

  19. Dyatlovitskaya, E.V., Kandyba, A.G., Kozlov, A.M., Somova, O.G.: Sphinganine in Sphingomyelins of tumors and mouse regenerating liver. Biochemistry (Mosc). 66, 502–504 (2001)

    Article  PubMed  CAS  Google Scholar 

  20. Semenza, G.L.: Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit. Rev. Biochem. Mol. Biol. 35, 71–103 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. Svensson, M., Lindstedt, R., Radin, N.S., Svanborg, C.: Epithelial glucosphingolipid expression as a determinant of bacterial adherence and cytokine production. Infect. Immun. 62, 4404–4410 (1994)

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Kyogashima, M., Taketomi, T.: Lipids from human platelets in primary thrombocythemia. Jpn. J. Exp. Med. 56, 113–118 (1986)

    PubMed  CAS  Google Scholar 

  23. Ji, L., Zhang, G., Uematsu, S., Akahori, Y., Hirabayashi, Y.: Induction of apoptotic DNA fragmentation and cell death by natural ceramide. FEBS Lett. 358, 211–214 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. Tani, M., Kuge, O.: Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 417, 673–678 (2012)

    Google Scholar 

  25. Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E., Merrill Jr., A.H.: Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J. Biol. Chem. 272, 22432–22437 (1997)

    Article  PubMed  CAS  Google Scholar 

  26. Stanley, P.: Golgi glycosylation. Cold Spring Harb Perspect Biol. (2011) 3(4). doi:10.1101/cshperspect.a005199

  27. Miyazaki, M., Ntambi, J.M.: Fatty acid desaturation and chain elongation in mammals. In: Vance, D.E., et al. (eds.) Biochemistry of lipids, lipoproteins and membranes, 5th edn, pp. 191–211. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  28. Kannagi, R., Stroup, R., Cochran, N.A., Urdal, D.L., Young Jr., W.W., Hakomori, S.: Factors affecting expression of glycolipid tumor antigens: influence of ceramide composition and coexisting glycolipid on the antigenicity of gangliotriaosylceramide in murine lymphoma cells. Cancer Res. 43, 4997–5005 (1983)

    PubMed  CAS  Google Scholar 

  29. Nishimura, K.: Phytosphingosine is a characteristic component of the glycolipids in the vertebrate intestine. Comp Biochem Physiol B. 86, 149–154 (1987)

    PubMed  CAS  Google Scholar 

  30. Omae, F., Miyazaki, M., Enomoto, A., Suzuki, M., Suzuki, Y., Suzuki, A.: DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379, 687–695 (2004)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Strömberg, N., Karlsson, K.A.: Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach. J. Biol. Chem. 265, 11251–11258 (1990)

    PubMed  Google Scholar 

  32. Hakomori, S.: Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 491, 369–402 (2001)

    Article  PubMed  CAS  Google Scholar 

  33. Hanada, K.: Intracellular trafficking of ceramide by ceramide transfer protein. Proc Jpn Acad Ser B Phys Biol Sci. 86, 426–437 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. D’Angelo, G., Uemura, T., Chuang, C.C., Polishchuk, E., Santoro, M., Ohvo-Rekilä, H., Sato, T., Di Tullio, G., Varriale, A., D’Auria, S., Daniele, T., Capuani, F., Johannes, L., Mattjus, P., Monti, M., Pucci, P., Williams, R.L., Burke, J.E., Platt, F.M., Harada, A., De Matteis, M.A.: Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 501, 116–120 (2013)

    Article  PubMed  CAS  Google Scholar 

  35. Domonand, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Kyogashima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Fragmentation scheme and MS/MS profile of the [M + H]+ ion at m/z 540.2 derived from Cer of d18:0-C16:0 and its spectrum (a). MS/MS profile of the [M + H] + ion at m/z 789.9 derived from sphingomyelin d18:0-C22:0. Ion at m/z 184.5 derived from phosphocholine (b). (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Tamiya-Koizumi, K., Yamada, M. et al. Individual profiles of free ceramide species and the constituent ceramide species of sphingomyelin and neutral glycosphingolipid and their alteration according to the sequential changes of environmental oxygen content in human colorectal cancer Caco-2 cells. Glycoconj J 31, 209–219 (2014). https://doi.org/10.1007/s10719-013-9511-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9511-9

Keywords

Navigation