Skip to main content

Advertisement

Log in

Expression machinery of GM4: the excess amounts of GM3/GM4S synthase (ST3GAL5) are necessary for GM4 synthesis in mammalian cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The ganglioside GM4 is a sialic acid-containing glycosphingolipid mainly expressed in mammalian brain and erythrocytes. GM4 is synthesized by the sialylation of galactosylceramide (GalCer), while the ganglioside GM3 is synthesized by the sialylation of lactosylceramide (LacCer). Recently, the enzyme GM3 synthase was found to be responsible for the synthesis of GM4 in vitro and in vivo, yet the mechanism behind GM4 expression in cells remains unclear. In this study, we attempted to establish GM4-reconstituted cells to reveal the regulation of GM4 synthesis. Interestingly, GM4 was not detected in RPMI 1846 cells expressing LacCer, GalCer, and GM3. Similarly, GM4 was not detected in CHO-K1 cells, even when such cells expressing LacCer and GM3 were stably transfected with the GalCer synthase (GalCerS) gene. GM4 became detectable only when the GM3/GM4 synthase (GM3/GM4S, ST3GAL5) gene was overexpressed in either RPMI 1846 or CHO-K1/GalCerS cells. A mutant of the B16 melanoma cell line, GM-95, lacks GlcCer and LacCer, due to an absence of GlcCer synthase, but carries endogenous LacCer synthase and GM3/GM4S. GalCer became detectable after transfection of GalCerS into GM95 cells, but the GM95/GalCerS reconstituted cells did not express GM4, indicating that competition between the substrates LacCer and GalCer for GM3/GM4S does not cause the failure of GM4 synthesis. These results suggest that the expression machinery of GM4 under physiological conditions is independent from that of GM3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GalCer:

Galactosylceramide

LacCer:

Lactosylceramide

GalCerS:

GalCer synthase

GM3/GM4S:

GM3/GM4 synthase

ER:

Endoplasmic reticulum

GlcCer:

Glucosylceramide

GlcCerS:

GlcCer synthase

LacCerS:

LacCer synthase

TLC:

Thin-layer chromatography

References

  1. Tagami, S., Inokuchi Ji, J., Kabayama, K., Yoshimura, H., Kitamura, F., Uemura, S., Ogawa, C., Ishii, A., Saito, M., Ohtsuka, Y., Sakaue, S., Igarashi, Y.: Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 277, 3085–3092 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J.L., Werth, N., Sandhoff, R., Sandhoff, K., Proia, R.L.: Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. U. S. A. 100, 3445–3449 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Aerts, J.M., Ottenhoff, R., Powlson, A.S., Grefhorst, A., van Eijk, M., Dubbelhuis, P.F., Aten, J., Kuipers, F., Serlie, M.J., Wennekes, T., Sethi, J.K., O’Rahilly, S., Overkleeft, H.S.: Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56, 1341–1349 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, H., Przybylska, M., Wu, I.H., Zhang, J., Siegel, C., Komarnitsky, S., Yew, N.S., Cheng, S.H.: Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56, 1210–1218 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Kabayama, K., Sato, T., Kitamura, F., Uemura, S., Kang, B.W., Igarashi, Y., Inokuchi, J.: TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: Involvement of ganglioside GM3. Glycobiology 15, 21–29 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y., Inokuchi, J.: Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 104, 13678–13683 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chisada, S., Horibata, Y., Hama, Y., Inagaki, M., Furuya, N., Okino, N., Ito, M.: The glycosphingolipid receptor for Vibrio trachuri in the red sea bream intestine is a GM4 ganglioside which contains 2-hydroxy fatty acids. Biochem. Biophys. Res. Commun. 333, 367–373 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Kuhn, R., Wiegandt, H.: Furthre gangliosode from the human brain. Z. Naturforsch. 19, 256–257 (1964)

    CAS  Google Scholar 

  9. Ueno, K., Ando, S., Yu, R.K.: Gangliosides of human, cat, and rabbit spinal cords and cord myelin. J. Lipid Res. 19, 863–871 (1978)

    CAS  PubMed  Google Scholar 

  10. Chiba, A., Kusunoki, S., Obata, H., Machinami, R., Kanazawa, I.: Ganglioside composition of the human cranial nerves, with special reference to pathophysiology of Miller Fisher syndrome. Brain Res. 745, 32–36 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. D’Angelo, G., Polishchuk, E., Di Tullio, G., Santoro, M., Di Campli, A., Godi, A., West, G., Bielawski, J., Chuang, C.C., van der Spoel, A.C., Platt, F.M., Hannun, Y.A., Polishchuk, R., Mattjus, P., De Matteis, M.A.: Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449, 62–67 (2007)

    Article  PubMed  Google Scholar 

  12. Sprong, H., Degroote, S., Nilsson, T., Kawakita, M., Ishida, N., van der Sluijs, P., van Meer, G.: Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol. Biol. Cell 14, 3482–3493 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chisada, S., Yoshimura, Y., Sakaguchi, K., Uemura, S., Go, S., Ikeda, K., Uchima, H., Matsunaga, N., Ogura, K., Tai, T., Okino, N., Taguchi, R., Inokuchi, J., Ito, M.: Zebrafish and mouse alpha2,3-sialyltransferases responsible for synthesizing GM4 ganglioside. J. Biol. Chem. 284, 30534–30546 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Uemura, S., Yoshida, S., Shishido, F., Inokuchi, J.: The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol. Biol. Cell 20, 3088–3100 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Eckhardt, M., Muhlenhoff, M., Bethe, A., Gerardy-Schahn, R.: Expression cloning of the Golgi CMP-sialic acid transporter. Proc. Natl. Acad. Sci. U. S. A. 93, 7572–7576 (1996)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Uemura, S., Kabayama, K., Noguchi, M., Igarashi, Y., Inokuchi, J.: Sialylation and sulfation of lactosylceramide distinctly regulate anchorage-independent growth, apoptosis, and gene expression in 3LL Lewis lung carcinoma cells. Glycobiology 13, 207–216 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Watarai, S., Kushi, Y., Shigeto, R., Misawa, N., Eishi, Y., Handa, S., Yasuda, T.: Production of monoclonal antibodies directed to Hanganutziu-Deicher active gangliosides, N-glycolylneuraminic acid-containing gangliosides. J. Biochem. 117, 1062–1069 (1995)

    CAS  PubMed  Google Scholar 

  18. Ichikawa, S., Nakajo, N., Sakiyama, H., Hirabayashi, Y.: A mouse B16 melanoma mutant deficient in glycolipids. Proc. Natl. Acad. Sci. U. S. A. 91, 2703–2707 (1994)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ichikawa, S., Sakiyama, H., Suzuki, G., Hidari, K.I., Hirabayashi, Y.: Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc. Natl. Acad. Sci. U. S. A. 93, 4638–4643 (1996)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nakamura, K., Hashimoto, Y., Moriwaki, K., Yamakawa, T., Suzuki, A.: Genetic regulation of GM4(NeuAc) expression in mouse erythrocytes. J. Biochem. 107, 3–7 (1990)

    CAS  PubMed  Google Scholar 

  21. Berselli, P., Zava, S., Sottocornola, E., Milani, S., Berra, B., Colombo, I.: Human GM3 synthase: a new mRNA variant encodes an NH2-terminal extended form of the protein. Biochim. Biophys. Acta 1759, 348–358 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Giraudo, C.G., Maccioni, H.J.: Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J. Biol. Chem. 278, 40262–40271 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Fujita, A., Cheng, J., Hirakawa, M., Furukawa, K., Kusunoki, S., Fujimoto, T.: Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18, 2112–2122 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yoshikawa, M., Go, S., Takasaki, K., Kakazu, Y., Ohashi, M., Nagafuku, M., Kabayama, K., Sekimoto, J., Suzuki, S., Takaiwa, K., Kimitsuki, T., Matsumoto, N., Komune, S., Kamei, D., Saito, M., Fujiwara, M., Iwasaki, K., Inokuchi, J.: Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc. Natl. Acad. Sci. U. S. A. 106, 9483–9488 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nagafuku, M., Okuyama, K., Onimaru, Y., Suzuki, A., Odagiri, Y., Yamashita, T., Iwasaki, K., Fujiwara, M., Takayanagi, M., Ohno, I., Inokuchi, J.: CD4 and CD8 T cells require different membrane gangliosides for activation. Proc. Natl. Acad. Sci. U. S. A. 109, E336–E342 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Sweeney for critical reading of this manuscript, Dr. M. Ito for providing RPMI 1846 cells and Dr. Y. Hirabayashi for providing GM-95 cells. This work was supported by Grant-in-Aid for Scientific Research (B; 23370064) (J.I.) and Mizutani Glycoscience Foundation (J.I.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Uemura or Jin-ichi Inokuchi.

Additional information

Highlights

- First establishment of GM4-reconstituted cells by overexpression of ST3Gal5 gene.

- No competition between the acceptor substrates LacCer and GalCer for GM3 and GM4 synthesis.

- Expression machinery of GM4 is independent from that of GM3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, S., Go, S., Shishido, F. et al. Expression machinery of GM4: the excess amounts of GM3/GM4S synthase (ST3GAL5) are necessary for GM4 synthesis in mammalian cells. Glycoconj J 31, 101–108 (2014). https://doi.org/10.1007/s10719-013-9499-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9499-1

Keywords

Navigation