Skip to main content

Advertisement

Log in

Immunochemical characterization of synthetic hexa-, octa- and decasaccharide conjugate vaccines for Vibrio cholerae O:1 Serotype Ogawa with emphasis on antigenic density and chain length

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cholera remains to be a global health problem without suitable vaccines for endemic control or outbreak relief. Here we describe a new parenteral vaccine based on neoglyco-conjugate of synthetic fragments of O-specific polysaccharide (O-SP) of Vibrio cholerae O1, serotype Ogawa. Hexa-, octa- and decasaccharides of the O-SP with carboxylic acid at the reducing end were chemically synthesized and conjugated to tetanus toxoid (TT). The conjugates prepared by a novel linking scheme consisted of 17-atom linker of hydrazide and alkyl bonds elicited robust serum IgG anti-LPS responses with vibriocidal activities in mice. There is a length dependence in immune response with decasaccharide conjugates elicited the highest anti-LPS IgG. There seems to be an indication that regardless of the carbohydrate chain length, a molar ratio of 230 ± 10 monosaccharide units per TT induced high antibody response. The conjugates also elicited cross-reactive antibodies to serotype Inaba. The formulation of the proposed cholera conjugate vaccine, similar to other licensed polysaccharide vaccine, is suitable for children immunization. A parenteral cholera vaccine could overcome the diminishing immunogenicity in most of oral vaccines due to the gastrointestinal complexity and environmental enteropathy in children living in impoverished environment and could be considered for global cholera immunization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chambers, J.S.: The conquest of Cholera: America’s Greatest Scourge. 1938. The Macmillan Publishing co. Inc., New York (1938)

    Google Scholar 

  2. Griffith, D.C., Kelly-Hope, L.A., Miller, M.A.: Review of reported cholera outbreaks worldwide, 1995–2005. Am. J. Trop. Med. Hyg. 75, 973–977 (2006)

    PubMed  Google Scholar 

  3. Mutre, J., Kim, D.W., Thomson, N.R., Connor, T.R., Lee, J.H., Kariuki, S., Croucher, N.J., Choi, S.Y., Harris, S.R., Lebens, M., Niyogi, S.K., Kim, E.J., Ramamurthy, T., Chun, J., Wood, J.L., Clemens, J.D., Czerkinsky, C., Nair, G.B., Holmgren, J., Parkhill, J., Dougan, G.: Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011)

    Article  Google Scholar 

  4. Mintz, E.D., Guerrant, R.L.: A lion in our village – the unconscionable era of cholera in Africa. N. Engl. J. Med. 360, 1060–1063 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. Bhattacharya, S., Black, R., Bourgeois, L., Clemens, J., Cravioto, A., Deen, J.L., Dougan, G., Glass, R., Grais, R.F., Greco, M., Gust, I., Holmgren, J., Kariuki, S., Lambert, P.H., Liu, M.A., Longini, I., Nair, G.B., Norrby, R., Nossal, G.J., Ogra, P., Sansonetti, P., von Seidlein, L., Songane, F., Svennerholm, A.M., Steele, D., Walker, R.: Cholera crises in Africa. Science 325, 885 (2009)

    Article  Google Scholar 

  6. Chambers, K.: Zimbabwe’s battle against cholera. Lancet 373, 993–994 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. Ali, M., Lopez, A.L., You, Y.A., Kim, Y.E., Sah, B., Maskery, B., Clemens, J.: The global burden of cholera. Bull. World Health Organ. 90, 209–218 (2012)

    Article  PubMed  Google Scholar 

  8. Leung, D.T., Chowdhury, F., Calderwood, S.B., Qadri, F., Ryan, E.T.: Immune responses to cholera in children. Expert Rev. Anti Infect. Ther. 10, 435–444 (2012)

    Article  PubMed  CAS  Google Scholar 

  9. Sekar, R., Amudhan, M., Sivashankar, M., Mythily, N., Mythreyee, M.A.: An outbreak of cholera among a rural population in south India: is it time to vaccinate the children in endemic areas? Indian J. Med. Res. 135, 678–679 (2012)

    PubMed  Google Scholar 

  10. Benenson, A.S., Mosley, W.H., Fahimuddin, M., Oseasohn, R.O.: Cholera vaccine field trials in east Pakistan. 2. Effectiveness in the field. Bull. World Health Organ. 38, 359–372 (1968)

    PubMed  CAS  Google Scholar 

  11. Barzilay, E.J., Schaad, N., Magloire, R., Mung, K.S., Boncy, J., Dahourou, G.A., Mintz, E.D., Steenland, M.W., Vertefeuille, J.F., Tappero, J.W.: Cholera surveillance during the Haiti epidemic–the first 2 years. N. Engl. J. Med. 368, 599–609 (2013)

    Article  PubMed  CAS  Google Scholar 

  12. Date, K.A., Vicari, A., Hyde, T.B., Mintz, E., Danovaro-Holliday, C., Henry, A., Tappero, J.W., Roels, T.H., Abrams, J., Burkholder, B.T., Ruiz-Matus, C., Andrus, J., Dietz, V.: Considerations for oral cholera vaccine use during outbreak after earthquake in Haiti. 2010–2011. Emerg. Infect. Dis. 17, 2105–2112 (2011)

    Article  PubMed  Google Scholar 

  13. Enserink, M.: Public health, no vaccines in the time of cholera. Science 329, 1462–1463 (2010)

    Article  PubMed  CAS  Google Scholar 

  14. Harris, J.B., LaRocque, R.C., Qadri, F., Ryan, E.T., Calderwood, S.B.: Cholera. Review. Lancet 379, 2466–2476 (2012)

    Article  PubMed  Google Scholar 

  15. GAVI Alliance.: Vaccine Investment Strategy Working Group Review. Washington DC 29–30 September, 2009. p. 2. http://www.gavialliance.org/library/gavi-documents/strategy/ (2009)

  16. Mosley, W.H., Woodward, W.E., Aziz, K.M., Rahman, A.S., Chowdhury, A.K., Ahmed, A., Feeley, J.C.: The 1968–1969 cholera-vaccine field trial in rural East Pakistan. Effectiveness of monovalent Ogawa and Inaba vaccines and a purified Inaba antigen, with comparative results of serological and animal protection tests. J. Infect. Dis. Suppl. 121, 1–9 (1970)

    Article  PubMed  Google Scholar 

  17. Sommer, A., Khan, M., Mosley, W.H.: Efficacy of vaccination of family contacts of cholera cases. Lancet 1(7814), 1230–1232 (1973)

    Article  PubMed  CAS  Google Scholar 

  18. Sommer, A., Mosley, W.H.: Ineffectiveness of cholera vaccination as an epidemic control measure. Lancet 1(7814), 1232–1235 (1973)

    Article  PubMed  CAS  Google Scholar 

  19. Richie, E.E., Punjabi, N.H., Sidharta, Y.Y., Peetosutan, K.K., Sukandar, M.M., Wasserman, S.S., Lesmana, M.M., Wangsasaputra, F.F., Pandam, S.S., Levine, M.M., O’Hanley, P.P., Cryz, S.J., Simanjuntak, C.H.: Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine 18, 2399–2410 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Levine, M.M.: Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine. BMC Biol. 8, 129–139 (2010)

    Article  PubMed  Google Scholar 

  21. Clemens, J.D., van Loon, F., Sack, D.A., Chakraborty, J., Rao, M.R., Ahmed, F., Harris, J.R., Khan, M.R., Yunus, M., Huda, S., et al.: Field trial of oral cholera vaccines in Bangladesh: serum vibriocidal and antitoxic antibodies as markers of the risk of cholera. J. Infect. Dis. 163, 1235–1242 (1991)

    Article  PubMed  CAS  Google Scholar 

  22. Sur, D., Kanungo, S., Sah, B., Manna, B., Ali, M., Paisley, A.M., Niyogi, S.K., Park, J.K., Sarkar, B., Puri, M.K., Kim, D.R., Deen, J.L., Holmgren, J., Carbis, R., Rao, R., Nguyen, T.V., Han, S.H., Attridge, S., Donner, A., Ganguly, N.K., Bhattacharya, S.K., Nair, G.B., Clemens, J.D., Lopez, A.L.: Efficacy of a low-cost, inactivated whole-cell oral cholera vaccine: results from 3 years of follow-up of a randomized, controlled trial. PLoS Negl. Trop. Dis. 5, e1289 (2011)

    Article  PubMed  CAS  Google Scholar 

  23. Ahmed, A., Bhattacharjee, A.K., Mosley, W.H.: Characteristics of the serum vibriocidal and agglutinating antibodies in cholera cases and in normal residents of the endemic and non-endemic cholera areas. J. Immunol. 105, 432–441 (1970)

    Google Scholar 

  24. Levine, M.M., Nalin, D.R., Craig, J.P., Hoover, D., Bergquist, E.J., Waterman, D., et al.: Immunity of cholera in man: relative role of antibacterial versus antitoxic immunity. Trans. R. Soc. Trop. Med. Hyg. 73, 3–9 (1979)

    Article  PubMed  CAS  Google Scholar 

  25. Gupta, R.K., Szu, S.C., Finkelstein, R.A., Robbins, J.B.: Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect. Immun. 60, 3201–3208 (1992)

    PubMed  CAS  Google Scholar 

  26. Mosley, W.H., Benenson, A.S., Barui, R.: A serological survey for cholera antibodies in rural east Pakistan. 2. A comparison of antibody titres in the innunized and control populationd of a cholera-vaccine field-trial area and the relation of antibody titre to cholera case rate. Bull. World Health Organ. 38, 335–346 (1968)

    PubMed  CAS  Google Scholar 

  27. McCormack, W.M., Chakraborty, J., Rahman, A.S., Mosley, W.H.: Vibriocidal antibody in clinical cholera. J. Infect. Dis. 120, 192–201 (1969)

    Article  PubMed  CAS  Google Scholar 

  28. Mosley WH, Ahmad S, Benenson AS, Ahmed A.: The relationship of vibriocidal antibody titre to susceptibility to cholera in family contacts of cholera patients. Bull. World Health Organ. 38:777–785

  29. Chongsa-nguan, M., Chaicumpa, W., Kalambaheti, T., Soejoedi, H., Luxananil, P., Swasdikosa, S., Thanasiri, P., Mayurasakorn, S.: Vibriocidal antibody and antibodies to Vibrio cholerae lipopolysaccharide, cell-bound haemagglutinin and toxin in Thai population. Southeast Asian J. Trop. Med. Public Health 17, 558–566 (1986)

    PubMed  CAS  Google Scholar 

  30. Neoh, S.H., Rowley, D.: The antigens of Vibrio cholerae involved in vibriocidal action of antibody and complement. J. Infect. Dis. 121, 505–513 (1970)

    Article  PubMed  CAS  Google Scholar 

  31. Patel, S.M., Rahman, M.A., Mohasin, M., Riyadh, M.A., Leung, D.T., Alam, M.M., Chowdhury, F., Khan, A.I., Weil, A.A., Aktar, A., Nazim, M., LaRocque, R.C., Ryan, E.T., Calderwood, S.B., Qadri, F., Harris, J.B.: Memory B cell responses to Vibrio cholerae O1 lipopolysaccharide are associated with protection against infection from household contacts of patients with cholera in Bangladesh. Clin. Vaccine Immunol. 19, 842–848 (2012)

    Article  PubMed  CAS  Google Scholar 

  32. Kossaczka, Z., Szu, S.C.: Evaluation of synthetic schemes to prepare immunogenic conjugates of Vibrio cholerae O139 capsular polysaccharide with chicken serum albumin. Glycoconj. J. 17, 425–433 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. Gupta, R.K., Taylor, D.N., Bryla, D.A., Robbins, J.B., Szu, S.C.: Phase I evaluation of Vibrio cholerae O1, serotype Inaba, polysaccharide-cholera toxin conjugates in adult volunteers. Infect. Immun. 66, 3095–3099 (1998)

    PubMed  CAS  Google Scholar 

  34. Kenne, L., Lindberg, B., Unger, P., Gustafsson, B., Holme, T.: Structural studies of the Vibrio cholerae O-antigen. Carbohydr. Res. 100, 341–349 (1982)

    Article  PubMed  CAS  Google Scholar 

  35. Hisatsune, K., Kondo, S., Isshiki, Y., Iguchi, T., Haishima, Y.: Occurrence of 2-O-ethyl-N-(3-deoxy-L-glycero-tetronyl)-D-perosamine (4-amino-4,6-dideoxy-D-anno-pyranose) in lipopolysaccharide from Ogawa but not from Inaba O forms of O1 Vibrio cholerae. Biochem. Biophys. Res. Commun. 190, 302–307 (1993)

    Article  PubMed  CAS  Google Scholar 

  36. Ito, T., Higuchi, T., Hirobe, M., Hiramatsu, K., Yokota, T.: Identification of a novel sugar, 4-amino-4,6,-dideoxy-o-methylmannose in the lipopolysaccharide of Vibrio cholerae O1 serotype Ogawa. Carbohydr. Res. 256, 113–128 (1998)

    Article  Google Scholar 

  37. Zhang, J., Kovác, P.: Synthesis of methyl alpha-glycosides of some higher oligosaccharide fragments of the O-antigen of Vibrio cholerae O1, serotype Inaba and Ogawa. Carbohydr. Res. 300, 329–439 (1997)

    Article  PubMed  CAS  Google Scholar 

  38. Chernyak, A., Kondo, S., Wade, W.T., Meeks, M., Alzari, P., Fournier, J.-M.: Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. J. Infect. Dis. 185, 950–962 (2002)

    Article  PubMed  CAS  Google Scholar 

  39. Meeks, M.D., Saksena, R., Ma, X., Wade, T.K., Taylor, R.K., Kovác, P., Wade, W.T.: Synthetic fragments of Vibrio cholerae O1 Inaba O-specific polysaccharide bound to a protein carrier are immunogenic in mice but do not induce protective antibodies. Infect. Immun. 72, 4090–4101 (2004)

    Article  PubMed  CAS  Google Scholar 

  40. Xu, P., Alam, M.M., Kalsy, A., Charles, R.C., Calderwood, S.B., Qadri, F., Ryan, E.T., Kováč, P.: Direct conjugation of bacterial O-SP-core antigens to proteins: development of cholera conjugate vaccines. Bioconjug. Chem. 22, 2179–2185 (2011)

    Article  PubMed  CAS  Google Scholar 

  41. Pozsgay, V., Chu, C., Pannell, L., Wolfe, J., Robbins, J.B., Schneerson, R.: Protein conjugates of synthetic saccharides elicit higher levels of serum IgG lipopolysaccharide antibodies in mice than do those of the O-specific polysaccharide Shigella dysenteriae type 1. Proc. Natl. Acad. Sci. U. S. A. 96, 5194–5197 (1999)

    Article  PubMed  CAS  Google Scholar 

  42. Safari, D., Dekker, H.A., de Jong, B., Rijkers, G.T., Kamerling, J.P., Snippe, H.: Antibody- and cell-mediated immune responses to a synthetic oligosaccharide conjugate vaccine after booster immunization. Vaccine 29, 6498–6504 (2011)

    Article  PubMed  CAS  Google Scholar 

  43. Costantino, P., Rappuoli, R., Berti, F.: The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert. Opin. Drug Discov. 6, 1045–1066 (2011)

    Article  PubMed  CAS  Google Scholar 

  44. Pozsgay, V.: Recent developments in synthetic oligosaccharide-based bacterial vaccines. (Review). Curr. Top. Med. Chem. 8, 126–140 (2008)

    Article  PubMed  CAS  Google Scholar 

  45. Gening, M.L., Maira-Litran, T., Kropec, A., Shurnik, D., Grout, M., Tsvetkov, Y.E., Nifantiev, N.E., Pier, G.B.: Synthetic β-(1–6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect. Immun. 78, 764–772 (2010)

    Article  PubMed  CAS  Google Scholar 

  46. Kusama, H., Craig, J.P.: Production of biologically active substances by two strains of vibrio cholerae. Infect. Immun. 1, 80–87 (1970)

    PubMed  CAS  Google Scholar 

  47. Holmes, R.K., Vasil, M.L., Finkelstein, R.A.: Studies on toxinogenesis in Vibrio cholerae. III. Characterization of nontoxinogenic mutants in vitro and in experimental animals. J. Clin. Invest. 55, 551–560 (1975)

    Article  PubMed  CAS  Google Scholar 

  48. Bundle, D.R., Gerken, M., Peters, T.: Synthesis of antigenic determinants of the Brucella A antigen, utilizing methyl 4-azido-4,6-dideoxy-α-D-mannopyranoside efficiently derived from D-mannose. Carbohydr. Res. 174, 239–251 (1988)

    Article  PubMed  CAS  Google Scholar 

  49. Eis, M.J., Ganem, B.: An improved synthesis of D-perosamine and some derivatives. Carbohydr. Res. 176, 316–323 (1988)

    Article  PubMed  CAS  Google Scholar 

  50. Peters, T., Bundle, D.R.: Synthetic antigenic determinants of the Brucella A polysaccharirde: A disaccharide thioglycoside for block synthesis of pentasaccharide and lower homologues of a1,2-linked 4,6-dideoxy-4-formamido-a-D-mannose. Can. J. Chem. 67, 491–496 (1989)

    Article  CAS  Google Scholar 

  51. Kenne, L., Unger, P., Wehler, T.: Synthesis and nuclear magnetic resonance studies of some N-acelated methyl 4-amino-4,6-dideoxy-a-D-mannopyranosides. J. Chem. Soc. Perkin Trans. 1, 1183–1196 (1988)

    Article  Google Scholar 

  52. Saksena, R., Zhang, J., Kovac, P.: Immunogens from a hexaccharide fragment of the O-SP of the Vibrio cholerae O:1, serotype Ogawa. Tetrahedron Assymetry 16, 187–197 (2005)

    Article  CAS  Google Scholar 

  53. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: A colorimetric method for the determination of sugars. Nature 168, 167 (1951)

    Article  PubMed  CAS  Google Scholar 

  54. Fekete A., Hoogerhout P., Zomer G., Kubler-Kielb J., Schneerson R., Robbins J.B., Pozsgay V.: Synthesis of octa- and dodecamers of D-ribitol-1-phosphate and their protein conjugates. Carbohydr. Res. 341, 2037–2048 (2006)

    Google Scholar 

  55. Finkelstein, R.A.: Vibriocidal antibody inhibition (VAI) analysis: a technique for the identification of the predominant vibriocidal antibodies in serum and for the detection and identification of Vibrio cholerae antigens. J. Immunol. 89, 264–267 (1962)

    CAS  Google Scholar 

  56. Attridge, S.R., Johansson, C., Trach, D.D., Qadri, F., Svennerholm, A.M.: Sensitive microplate assay for detection of bactericidal antibodies to Vibrio cholerae O139. Clin. Diagn. Lab. Immunol. 9, 383–387 (2002)

    PubMed  CAS  Google Scholar 

  57. Boutonnier, A., Dassy, B., Duménil, R., Guénolé, A., Ratsitorahina, M., Migliani, R., Fournier, J.M.: A simple and convenient microtiter plate assay for the detection of bactericidal antibodies to Vibrio cholerae O1 and Vibrio cholerae O139. J. Microb. Methods 55, 745–753 (2003)

    Article  CAS  Google Scholar 

  58. Chu, C.Y., Liu, B.K., Watson, D., Szu, S.S., Bryla, D., Shiloach, J., Schneerson, R., Robbins, J.: Preparation, characterization, and immunogenicity of conjugates composed of the O-specific polysaccharide of Shigella dysenteriae type 1 (Shiga’s bacillus) bound to tetanus toxoid. Infect. Immun. 59, 4450–4458 (1991)

    PubMed  CAS  Google Scholar 

  59. Mosley, W.H.: The role of immunity in cholera. A review of epidemiological and serological studies. Tex. Rep. Biol. Med. 27(Suppl.1), 227–241 (1969)

    Google Scholar 

  60. Sirisinha, S., Charupatana, C.: Antibody responses in serum, secretions, and urine of man after parenteral administration of vaccines. Infect. Immun. 2, 29–37 (1970)

    PubMed  CAS  Google Scholar 

  61. Robbins, J., Schneerson, R., Szu, S.C.: Perspective: Hypothesis: Serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the innoculum. J. Infect. Dis. 171, 1387–1398 (1995)

    Article  PubMed  CAS  Google Scholar 

  62. Huang, W., Morrell, D.: Successful treatment of recalcitrant warts with topical squaric acid in immunosuppressed child. Pediatr. Dermatol. 25, 275–276 (2008)

    Article  PubMed  Google Scholar 

  63. Hou, S.J., Saksena, R., Kovác, P.: Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydr. Res. 343, 196–210 (2008)

    Article  PubMed  CAS  Google Scholar 

  64. Saksena, R., Ma, X., Wade, T.K., Kovác, P., Wade, W.F.: Length of the linker and the interval between immunizations influences the efficacy of Vibrio cholerae O1, Ogawa hexasaccharide neoglycoconjugates. FEMS Immunol. Med. Microbiol. 47, 116–128 (2006)

    Article  PubMed  CAS  Google Scholar 

  65. Saksena, R., Ma, X., Wade, T.K., Kovác, P., Wade, W.F.: Effect of saccharide length on the immunogenicity of neoglycoconjugates from synthetic fragments of the O-SP of Vibrio cholerae O1, serotype Ogawa. Carbohydr. Res. 340, 2256–2269 (2005)

    Article  PubMed  CAS  Google Scholar 

  66. Finkelstein, R.A., Pongpairojana, S.: A test of antigenicity for the selection of strains for inclusion in cholera vaccines. Bull. World Health Organ. 39, 247–259 (1968)

    PubMed  CAS  Google Scholar 

  67. Villeneuve, S., Boutonnier, A., Mulard, L.A., Fourier, J.-M.: Immunochemical characterization of an Ogawa-Inaba common antigenic determinant of Vibrio cholerae O1. Microbiology 145, 2477–2484 (1999)

    PubMed  CAS  Google Scholar 

  68. Newman, B.A., Kabat, E.A.: An immunochemical study of the combining site specificities of C57BL/6J monoclonal antibodies to alpha (1–6)-linked dextran B512. J. Immunol. 135, 1220–1231 (1985)

    PubMed  CAS  Google Scholar 

  69. Pozsgay, V., Kubler-Kielb, J., Schneerson, R., Robbins, J.B.: Effect of the nonreducing end of Shigella dysenteriae type 1 O-specific oligosaccharides on their immunogenicity as conjugates in mice. Proc. Natl. Acad. Sci. U. S. A. 104, 14478–14482 (2007)

    Article  PubMed  CAS  Google Scholar 

  70. World Health Organization: Zimbabwe Cholera and health situation. http://www.who.int/hac/crises/zmb/appeal/zimbabwe_cholera_advocacy_1dec (2008)

  71. Mandal, J., Dinoop, K.P., Parija, S.C.: Increasing antimicrobial resistance of Vibrio cholerae OI biotype E1 tor strains isolated in a tertiary-care centre in India. J. Health Popul. Nutr. 30, 12–16 (2012)

    Article  PubMed  Google Scholar 

  72. Armah, G.E., Sow, S.O., Breiman, R.F., Dallas, M.J., Tapia, M.D., Feikin, D.R., Binka, F.N., Steele, A.D., Laserson, K.F., Ansah, N.A., Levine, M.M., Lewis, K., Coia, M.L., Attah-Poku, M., Ojwando, J., Rivers, S.B., Victor, J.C., Nyambane, G., Hodgson, A., Schödel, F., Ciarlet, M., Neuzil, K.M.: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet 376, 606–614 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Nancy Vieira, Bruce Coxon, Jianping Li and Joanna Kubler-Kielb for to their helps in spectrum analysis and to Drs. John B. Robbins for helpful discussions.

Funding and disclosure

This work was supported fully by the Intramural Research at the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health. The authors have no conflict interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shousun C. Szu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ftacek, P., Nelson, V. & Szu, S.C. Immunochemical characterization of synthetic hexa-, octa- and decasaccharide conjugate vaccines for Vibrio cholerae O:1 Serotype Ogawa with emphasis on antigenic density and chain length. Glycoconj J 30, 871–880 (2013). https://doi.org/10.1007/s10719-013-9491-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9491-9

Keywords

Navigation