Novel data analysis tool for semiquantitative LC-MS-MS2 profiling of N-glycans


Despite recent technical advances in glycan analysis, the rapidly growing field of glycomics still lacks methods that are high throughput and robust, and yet allow detailed and reliable identification of different glycans. LC-MS-MS2 methods have a large potential for glycan analysis as they enable separation and identification of different glycans, including structural isomers. The major drawback is the complexity of the data with different charge states and adduct combinations. In practice, manual data analysis, still largely used for MALDI-TOF data, is no more achievable for LC-MS-MS2 data. To solve the problem, we developed a glycan analysis software GlycanID for the analysis of LC-MS-MS2 data to identify and profile glycan compositions in combination with existing proteomic software. IgG was used as an example of an individual glycoprotein and extracted cell surface proteins of human fibroblasts as a more complex sample to demonstrate the power of the novel data analysis approach. N-glycans were isolated from the samples and analyzed as permethylated sugar alditols by LC-MS-MS2, permitting semiquantitative glycan profiling. The data analysis consisted of five steps: 1) extraction of LC-MS features and MS2 spectra, 2) mapping potential glycans based on feature distribution, 3) matching the feature masses with a glycan composition database and de novo generated compositions, 4) scoring MS2 spectra with theoretical glycan fragments, and 5) composing the glycan profile for the identified glycan compositions. The resulting N-glycan profile of IgG revealed 28 glycan compositions and was in good correlation with the published IgG profile. More than 50 glycan compositions were reliably identified from the cell surface N-glycan profile of human fibroblasts. Use of the GlycanID software made relatively rapid analysis of complex glycan LC-MS-MS2 data feasible. The results demonstrate that the complexity of glycan LC-MS-MS2 data can be used as an asset to increase the reliability of the identifications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



N-glycolylneuraminic acid Neu5Gc


Electrospray ionization


Deoxyhexose (fucose)


Hexose Hex


In-source decay


Intravenous immunoglobulin


Liquid chromatography


Linear trap quadrupole


Matrix-assisted laser desorption ionization


Mass Spectrometry

MS2 :

Tandem Mass Spectrometry


N-acetylhexosamine HexNAc


Normal human dermal fibroblasts




Retention time


N-acetylneuraminic acid Neu5Ac (sialic acid)




  1. 1.

    Jefferis, R.: Glycosylation as a strategy to improve antibody-based therapeutics. Nature reviews. Drug Discov. 8, 226–234 (2009)

    Article  CAS  Google Scholar 

  2. 2.

    Kaneko, Y., Nimmerjahn, F., Ravetch, J.V.: Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006)

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Hemmoranta, H., Satomaa, T., Blomqvist, M., Heiskanen, A., Aitio, O., Saarinen, J., Natunen, J., Partanen, J., Laine, J., Jaatinen, T.: N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Exp. Hematol. 35, 1279–1292 (2007)

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Heiskanen, A., Hirvonen, T., Salo, H., Impola, U., Olonen, A., Laitinen, A., Tiitinen, S., Natunen, S., Aitio, O., Miller-Podraza, H., Wuhrer, M., Deelder, A.M., Natunen, J., Laine, J., Lehenkari, P., Saarinen, J., Satomaa, T., Valmu, L.: Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj. J. 26, 367–384 (2009)

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    North, S.J., Hitchen, P.G., Haslam, S.M., Dell, A.: Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19, 498–506 (2009)

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Zaia, J.: Mass spectrometry and the emerging field of glycomics. Chem. Biol. 15, 881–892 (2008)

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Wuhrer, M., Deelder, A.M., Hokke, C.H.: Protein glycosylation analysis by liquid chromatography–mass spectrometry. J. Chromatogr. B 825, 124–133 (2005)

    Article  CAS  Google Scholar 

  8. 8.

    Ruhaak, L., Deelder, A.M., Wuhrer, M.: Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 394, 163–174 (2009)

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008)

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Maass, K., Ranzinger, R., Geyer, H., von der Lieth, C.W., Geyer, R.: “Glyco-peakfinder”–de novo composition analysis of glycoconjugates. Proteomics 7, 4435–4444 (2007)

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Cooper, C.A., Gasteiger, E., Packer, N.H.: GlycoMod–a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1, 340–349 (2001)

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Dreyfuss, J.M., Jacobs, C., Gindin, Y., Benson, G., Staples, G.O., Zaia, J.: Targeted analysis of glycomics liquid chromatography/mass spectrometry data. Anal. Bioanal. Chem. 399, 727–735 (2011)

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Vakhrushev, S.Y., Dadimov, D., Peter-Katalinic, J.: Software platform for high-throughput glycomics. Anal. Chem. 81, 3252–3260 (2009)

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    May, D., Law, W., Fitzgibbon, M., Fang, Q., McIntosh, M.: Software platform for rapidly creating computational tools for mass spectrometry-based proteomics. J. Proteome Res. 8, 3212–3217 (2009)

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Bertsch, A., Gropl, C., Reinert, K., Kohlbacher, O.: OpenMS and TOPP: open source software for LC-MS data analysis. Meth. Mol. Biol. 696, 353–367 (2011)

    Article  CAS  Google Scholar 

  16. 16.

    Costello, C.E., Contado-Miller, J.M., Cipollo, J.F.: A glycomics platform for the analysis of permethylated oligosaccharide alditols. J. Am. Soc. Mass Spectrom. 18, 1799–1812 (2007)

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Peltoniemi, H., Ritamo, I., Räbina, J., Valmu, L.: Automated N-Glycan composition analysis with LC-MS/MSMS. In: Hicks, M.G., Kettner, C. (eds.) Proceedings of the International Beilstein Symposium on Glyco-Bioinformatic, Potsdam, Germany 2009, 37–47 (2010)

  18. 18.

    Scheurer, S.B., Rybak, J.N., Roesli, C., Brunisholz, R.A., Potthast, F., Schlapbach, R., Neri, D., Elia, G.: Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5, 2718–2728 (2005)

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Kang, P., Mechref, Y., Novotny, M.V.: High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Comm. Mass Spectrom. RCM 22, 721–734 (2008)

    Article  CAS  Google Scholar 

  20. 20.

    Viseux, N., de Hoffmann, E., Domon, B.: Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Anal. Chem. 69, 3193–3198 (1997)

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Ranzinger, R., Herget, S., von der Lieth, C.W., Frank, M.: GlycomeDB–a unified database for carbohydrate structures. Nucleic Acids Res. 39, D373–D376 (2011)

    PubMed  Article  Google Scholar 

  22. 22.

    Joenvaara, S., Ritamo, I., Peltoniemi, H., Renkonen, R.: N-glycoproteomics - an automated workflow approach. Glycobiology 18, 339–349 (2008)

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Peltoniemi, H., Joenvaara, S., Renkonen, R.: De novo glycan structure search with the CID MS/MS spectra of native N-glycopeptides. Glycobiology 19, 707–714 (2009)

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Pučić, M., Knežević, A., Vidič, J., Adamczyk, B., Novokmet, M., Polašek, O., Gornik, O., Šupraha-Goreta, S., Wormald, M.R., Redžić, I., Campbell, H., Wright, A., Hastie, N.D., Wilson, J.F., Rudan, I., Wuhrer, M., Rudd, P.M., Josić, D., Lauc, G.: High throughput Isolation and Glycosylation analysis of IgG–variability and heritability of the IgG Glycome in three isolated human populations. Mol. Cell. Proteomics 10, (2011)

  25. 25.

    Brüll, L.P., Kovácik, V., Thomas-Oates, J.E., Heerma, W., Haverkamp, J.: Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Comm. Mass Spectrom. 12, 1520–1532 (1998)

    Article  Google Scholar 

  26. 26.

    Wuhrer, M., Deelder, A.M., van der Burgt, Y.E.M.: Mass spectrometric glycan rearrangements. Mass Spectrom. Rev. 30, 664–680 (2011)

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Pabst, M., Kolarich, D., Poltl, G., Dalik, T., Lubec, G., Hofinger, A., Altmann, F.: Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal. Biochem. 384, 263–273 (2009)

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Wada, Y., Azadi, P., Costello, C.E., Dell, A., Dwek, R.A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N.G., Kato, K., Kawasaki, N., Khoo, K.H., Kim, S., Kondo, A., Lattova, E., Mechref, Y., Miyoshi, E., Nakamura, K., Narimatsu, H., Novotny, M.V., Packer, N.H., Perreault, H., Peter-Katalinic, J., Pohlentz, G., Reinhold, V.N., Rudd, P.M., Suzuki, A., Taniguchi, N.: Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17, 411–422 (2007)

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Boyd, P.N., Lines, A.C., Patel, A.K.: The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 32, 1311–1318 (1995)

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Iida, S., Kuni-Kamochi, R., Mori, K., Misaka, H., Inoue, M., Okazaki, A., Shitara, K., Satoh, M.: Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. BMC Cancer 9, 58 (2009)

    PubMed  Article  Google Scholar 

  31. 31.

    Hodoniczky, J., Zheng, Y.Z., James, D.C.: Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21, 1644–1652 (2005)

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Raju, T.S.: Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008)

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Anthony, R.M., Nimmerjahn, F., Ashline, D.J., Reinhold, V.N., Paulson, J.C., Ravetch, J.V.: Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008)

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Walsh, G.: Biopharmaceutical benchmarks 2010. Nat. Biotechnol. 28, 917–924 (2010)

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Stadlmann, J., Pabst, M., Kolarich, D., Kunert, R., Altmann, F.: Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8, 2858–2871 (2008)

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Huhn, C., Selman, M.H., Ruhaak, L.R., Deelder, A.M., Wuhrer, M.: IgG glycosylation analysis. Proteomics 9, 882–913 (2009)

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Suila, H., Pitkanen, V., Hirvonen, T., Heiskanen, A., Anderson, H., Laitinen, A., Natunen, S., Miller-Podraza, H., Satomaa, T., Natunen, J., Laitinen, S., Valmu, L.: Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood? J. Mol. Cell Biol. 3, 99–107 (2011)

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Hirvonen, T., Suila, H., Kotovuori, A., Ritamo, I., Heiskanen, A., Sistonen, P., Anderson, H., Satomaa, T., Saarinen, J., Tiitinen, S., Rabina, J., Laitinen, S., Natunen, S., Valmu, L.: The i blood group antigen as a marker for umbilical cord blood-derived mesenchymal stem cells. Stem Cell Dev. 21, 455–464 (2012)

    Article  CAS  Google Scholar 

  39. 39.

    An, H.J., Gip, P., Kim, J., Wu, S., Park, K.W., McVaugh, C.T., Schaffer, D.V., Bertozzi, C.R., Lebrilla, C.B.: Extensive determination of glycan heterogeneity reveals an unusual abundance of high-mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol. Cell. Proteomics (2012)

  40. 40.

    Delaney, J., Vouros, P.: Liquid chromatography ion trap mass spectrometric analysis of oligosaccharides using permethylated derivatives. Rapid Comm. Mass Spectrom. 15, 325–334 (2001)

    Article  CAS  Google Scholar 

  41. 41.

    Alley, W.R., Madera, M., Mechref, Y., Novotny, M.V.: Chip-based Reversed-phase liquid Chromatography-Mass Spectrometry of Permethylated N-Linked Glycans: a potential methodology for cancer-biomarker discovery. Anal. Chem. 82, 5095–5106 (2010)

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Pabst, M., Altmann, F.: Glycan analysis by modern instrumental methods. Proteomics 11, 631–643 (2011)

    PubMed  Article  CAS  Google Scholar 

Download references


We would like to thank Lotta Andersson and Birgitta Rantala for skillful technical assistance.

Author information



Corresponding author

Correspondence to Hannu Peltoniemi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peltoniemi, H., Natunen, S., Ritamo, I. et al. Novel data analysis tool for semiquantitative LC-MS-MS2 profiling of N-glycans. Glycoconj J 30, 159–170 (2013).

Download citation


  • Glycomics
  • Mass spectrometry
  • Bioinformatics
  • Immunoglobulin
  • Fibroblast