Skip to main content

Advertisement

Log in

Specific interaction of the envelope glycoproteins E1 and E2 with liver heparan sulfate involved in the tissue tropismatic infection by hepatitis C virus

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The first step in the process of infections by the hepatitis C virus (HCV) is attachment to the host cell, which is assumed to be mediated by interaction of the envelope glycoproteins E1 and E2 with cell surface glycosaminoglycans. In this study, a variety of glycosaminoglycans, heparan sulfate (HS) from various bovine tissues as well as chondroitin sulfate (CS)/dermatan sulfate from bovine liver, were used to examine the direct interaction with recombinant E1 and E2 proteins. Intriguingly, among HS preparations from various bovine tissues, only liver HS strongly bound to both E1 and E2. Since HS from liver, which is the target tissue of HCV, contains highly sulfated structures compared to HS from other tissues, the present results suggest that HS-proteoglycan on the liver cell surface appears to be one of the molecules that define the liver-specific tissue tropism of HCV infection. The interaction assay with chemically modified heparin derivatives provided evidence that the binding of the viral proteins to heparin/HS is not only mediated by simple ionic interactions, but that the 6-O-sulfation and N-sulfation are important. Heparin oligosaccharides equal to or larger than 10-mer were required to inhibit the binding. Notably, a highly sulfated CS-E preparation from squid cartilage also strongly interacted with both viral proteins and inhibited the entry of pseudotype HCV into the target cells, suggesting that the highly sulfated CS-E might be useful as an anti-HCV drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2AB:

2-aminobenzamide

CDNA:

completely desulfated and N-acetylated heparin

CDNS:

completely desulfated and N-sulfated heparin

NDNA:

N-desulfated and N-acetylated heparin

2ODS:

2-O-desulfated heparin

6ODS:

6-O-desulfated heparin

CS:

chondroitin sulfate

DS:

dermatan sulfate

ELISA:

enzyme-linked immunosorbent assay

FGF:

fibroblast growth factor

GAG:

glycosaminoglycan

HCV:

hepatitis C virus

ΔHexA:

4-deoxy-α-L-threo-hex-4-enepyranosyluronic acid

HPLC:

high performance liquid chromatography

HS:

heparan sulfate

PG:

proteoglycan

VSV:

vesicular stomatitis virus

NS:

2-N-sulfate

2S:

2-O-sulfate

4S:

4-O-sulfate

6S:

6-O-sulfate

References

  1. Wasley, A., Alter, M.J.: Epidemiology of hepatitis C: geographic differences and temporal trends. Semin. Liver Dis. 20, 1–16 (2000)

    Article  PubMed  CAS  Google Scholar 

  2. Lauer, G.M., Walker, B.D.: Hepatitis C virus infection. N. Engl. J. Med. 345, 41–52 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Barth, H., Schafer, C., Adah, M.I., Zhang, F., Linhardt, R.J., Toyoda, H., Kinoshita-Toyoda, A., Toida, T., Van Kuppevelt, T.H., Depla, E., Von Weizsacker, F., Blum, H.E., Baumert, T.F.: Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J. Biol. Chem. 278, 41003–41012 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. Koutsoudakis, G., Kaul, A., Steinmann, E., Kallis, S., Lohmann, V., Pietschmann, T., Bartenschlager, R.: Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J. Virol. 80, 5308–5320 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Agnello, V., Abel, G., Elfahal, M., Knight, G.B., Zhang, Q.X.: Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl. Acad. Sci. U. S. A. 96, 12766–12771 (1999)

    Article  PubMed  CAS  Google Scholar 

  6. Monazahian, M., Böhme, I., Bonk, S., Koch, A., Scholz, C., Grethe, S., Thomssen, R.: Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 57, 223–229 (1999)

    Article  PubMed  CAS  Google Scholar 

  7. Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Petracca, R., Weiner, A.J., Houghton, M., Rosa, D., Grandi, G., Abrignani, S.: Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998)

    Article  PubMed  CAS  Google Scholar 

  8. Bartosch, B., Vitelli, A., Granier, C., Goujon, C., Dubuisson, J., Pascale, S., Scarselli, E., Cortese, R., Nicosia, A., Cosset, F.L.: Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J. Biol. Chem. 278, 41624–41630 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. Evans, M.J., von Hahn, T., Tscherne, D.M., Syder, A.J., Panis, M., Wölk, B., Hatziioannou, T., McKeating, J.A., Bieniasz, P.D., Rice, C.M.: Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007)

    Article  PubMed  CAS  Google Scholar 

  10. Liu, S., Yang, W., Shen, L., Turner, J.R., Coyne, C.B., Wang, T.: Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J. Virol. 83, 2011–2014 (2009)

    Article  PubMed  CAS  Google Scholar 

  11. Moradpour, D., Penin, F., Rice, C.M.: Replication of hepatitis C virus. Nat. Rev. Microbiol. 5, 453–463 (2007)

    Article  PubMed  CAS  Google Scholar 

  12. Garson, J.A., Lubach, D., Passas, J., Whitby, K., Grant, P.R.: Suramin blocks hepatitis C binding to human hepatoma cells in vitro. J. Med. Virol. 57, 238–242 (1999)

    Article  PubMed  CAS  Google Scholar 

  13. Liu, B., Paranjpe, S., Bowen, W.C., Bell, A.W., Luo, J.H., Yu, Y.P., Mars, W.M., Michalopoulos, G.K.: Investigation of the role of glypican 3 in liver regeneration and hepatocyte proliferation. Am. J. Pathol. 175, 717–724 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. Yagnik, A.T., Lahm, A., Meola, A., Roccasecca, R.M., Ercole, B.B., Nicosia, A., Tramontano, A.: A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40, 355–366 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. Sugahara, K., Kitagawa, H.: Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10, 518–527 (2000)

    Article  PubMed  CAS  Google Scholar 

  16. Esko, J.D., Selleck, S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2001)

    Article  PubMed  Google Scholar 

  17. Yamada, S., Sugahara, K.: Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr. Drug Discov. Tech. 5, 289–301 (2008)

    Article  CAS  Google Scholar 

  18. Casu, B., Lindahl, U.: Structure and biological interactions of heparin and heparan sulfate. Adv. Carbohydr. Chem. Biochem. 57, 159–206 (2001)

    Article  PubMed  CAS  Google Scholar 

  19. Kreuger, J., Spillmann, D., Li, J.P., Lindahl, U.: Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol. 174, 323–327 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. Shukla, D., Spear, P.G.: Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 108, 503–510 (2001)

    PubMed  CAS  Google Scholar 

  21. Spillmann, D.: Heparan sulfate: anchor for viral intruders? Biochimie 83, 811–817 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Rostand, K.S., Esko, J.D.: Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65, 1–8 (1997)

    PubMed  CAS  Google Scholar 

  23. Giroglou, T., Florin, L., Schäfer, F., Streeck, R.E., Sapp, M.: Human papillomavirus infection requires cell surface heparan sulfate. J. Virol. 75, 1565–1570 (2001)

    Article  PubMed  CAS  Google Scholar 

  24. Birkmann, A., Mahr, K., Ensser, A., Yağuboğlu, S., Titgemeyer, F., Fleckenstein, B., Neipel, F.: Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J. Virol. 75, 11583–11593 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. Liu, J., Thorp, S.C.: Cell surface heparan sulfate and its roles in assisting viral infections. Med. Res. Rev. 22, 1–25 (2002)

    Article  PubMed  Google Scholar 

  26. Ishihara, M., Takano, R., Kanda, T., Hayashi, K., Hara, S., Kikuchi, H., Yoshida, K.: Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. J. Biochem. 118, 1255–1260 (1995)

    PubMed  CAS  Google Scholar 

  27. Ishihara, M., Kariya, Y., Kikuchi, H., Minamisawa, T., Yoshida, K.: Importance of 2-O-sulfate groups of uronate residues in heparin for activation of FGF-1 and FGF-2. J. Biochem. 121, 345–349 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. Maccarana, M., Sakura, Y., Tawada, A., Yoshida, K., Lindahl, U.: Domain structure of heparan sulfates from bovine organs. J. Biol. Chem. 271, 17804–17810 (1996)

    Article  PubMed  CAS  Google Scholar 

  29. Yamane, Y., Tohno-oka, R., Yamada, S., Furuya, S., Shiokawa, K., Hirabayashi, Y., Sugino, H., Sugahara, K.: Molecular characterization of Xenopus embryo heparan sulfate. Differential structural requirements for the specific binding to basic fibroblast growth factor and follistatin. J. Biol. Chem. 273, 7375–7381 (1998)

    Article  PubMed  CAS  Google Scholar 

  30. Ueno, M., Yamada, S., Zako, M., Bernfield, M., Sugahara, K.: Structural characterization of heparan sulfate and chondroitin sulfate of syndecan-1 purified from normal murine mammary gland epithelial cells. Common phosphorylation of xylose and differential sulfation of galactose in the protein linkage region tetrasaccharide sequence. J. Biol. Chem. 276, 29134–29140 (2001)

    Article  PubMed  CAS  Google Scholar 

  31. Nandini, C.D., Itoh, N., Sugahara, K.: Novel 70-kDa chondroitin sulfate/dermatan sulfate hybrid chains with a unique heterogeneous sulfation pattern from shark skin, which exhibit neuritogenic activity and binding activities for growth factors and neurotrophic factors. J. Biol. Chem. 280, 4058–4069 (2005)

    Article  PubMed  CAS  Google Scholar 

  32. Kinoshita, A., Sugahara, K.: Microanalysis of glycosaminoglycan-derived oligosaccharides labeled with the fluorophore 2-aminobenzamide by high-performance liquid chromatography: application to disaccharide composition analysis and exo-sequencing of oligosaccharides. Anal. Biochem. 269, 367–378 (1999)

    Article  PubMed  CAS  Google Scholar 

  33. Kawashima, H., Atarashi, K., Hirose, M., Hirose, J., Yamada, S., Sugahara, K., Miyasaka, M.: Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines. J. Biol. Chem. 277, 12921–12930 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. Saito, A., Munakata, H., Satoh, K.: Glyco-western blotting: biotinylated dermatan sulfate as a probe for the detection of dermatan sulfate binding proteins using western blotting. Connect. Tissue Res. 43, 1–7 (2002)

    PubMed  CAS  Google Scholar 

  35. Tani, H., Komoda, Y., Matsuo, E., Suzuki, K., Hamamoto, I., Yamashita, T., Moriishi, K., Fujiyama, K., Kanto, T., Hayashi, N., Owsianka, A., Patel, A.H., Whitt, M.A., Matsuura, Y.: Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins. J. Virol. 81, 8601–8612 (2007)

    Article  PubMed  CAS  Google Scholar 

  36. Vongchan, P., Warda, M., Toyoda, H., Toida, T., Marks, R.M., Linhardt, R.J.: Structural characterization of human liver heparan sulfate. Biochim. Biophys. Acta 1721, 1–8 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. Volpi, N.: Disaccharide analysis and molecular mass determination to microgram level of single sulfated glycosaminoglycan species in mixtures following agarose-gel electrophoresis. Anal. Biochem. 273, 229–239 (1999)

    Article  PubMed  CAS  Google Scholar 

  38. Volpi, N.: Hyaluronic acid and chondroitin sulfate unsaturated disaccharides analysis by high-performance liquid chromatography and fluorimetric detection with dansylhydrazine. Anal. Biochem. 277, 19–24 (2000)

    Article  PubMed  CAS  Google Scholar 

  39. Matsuura, Y., Harada, S., Suzuki, R., Watanabe, Y., Inoue, Y., Saito, I., Miyamura, T.: Expression of processed envelope protein of hepatitis C virus in mammalian and insect cells. J. Virol. 66, 1425–1431 (1992)

    PubMed  CAS  Google Scholar 

  40. Barth, H., Schnober, E.K., Zhang, F., Linhardt, R.J., Depla, E., Boson, B., Cosset, F.L., Patel, A.H., Blum, H.E., Baumert, T.F.: Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J. Virol. 80, 10579–10590 (2006)

    Article  PubMed  CAS  Google Scholar 

  41. Li, F., Yamada, S., Basappa, Shetty, A.K., Sugiura, M., Sugahara, K.: Determination of iduronic acid and glucuronic acid in sulfated chondroitin/dermatan hybrid chains by 1H-nuclear magnetic resonance spectroscopy. Glycoconj. J. 25, 603–610 (2008)

    Article  PubMed  Google Scholar 

  42. Salmivirta, M., Lidholt, K., Lindahl, U.: Heparan sulfate: a piece of information. FASEB J. 10, 1270–1279 (1996)

    PubMed  CAS  Google Scholar 

  43. Barth, H., Liang, T.J., Baumert, T.F.: Hepatitis C virus entry: molecular biology and clinical implications. Hepatology 44, 527–535 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. Yanagiya, A., Ohka, S., Hashida, N., Okamura, M., Taya, C., Kamoshita, N., Iwasaki, K., Sasaki, Y., Yonekawa, H., Nomoto, A.: Tissue-specific replicating capacity of a chimeric poliovirus that carries the internal ribosome entry site of hepatitis C virus in a new mouse model transgenic for the human poliovirus receptor. J. Virol. 77, 10479–10487 (2003)

    Article  PubMed  CAS  Google Scholar 

  45. Bergström, T., Trybala, E., Spillmann, D.: Heparan sulfate and viral tropism. Nat. Med. 3, 1177 (1997)

    Article  PubMed  Google Scholar 

  46. Dorner, M., Horwitz, J.A., Robbins, J.B., Barry, W.T., Feng, Q., Mu, K., Jones, C.T., Schoggins, J.W., Catanese, M.T., Burton, D.R., Law, M., Rice, C.M., Ploss, A.: A genetically humanized mouse model for hepatitis C virus infection. Nature 474, 208–211 (2011)

    Article  PubMed  CAS  Google Scholar 

  47. Lyon, M., Deakin, J.A., Gallagher, J.T.: Liver heparan sulfate structure. A novel molecular design. J. Biol. Chem. 269, 11208–11215 (1994)

    PubMed  CAS  Google Scholar 

  48. Krey, T., d’Alayer, J., Kikuti, C.M., Saulnier, A., Damier-Piolle, L., Petitpas, I., Johansson, D.X., Tawar, R.G., Baron, B., Robert, B., England, P., Persson, M.A., Martin, A., Rey, F.A.: The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. PLoS Pathog. 6, e1000762 (2010)

    Article  PubMed  Google Scholar 

  49. Matsuura, Y., Tani, H., Suzuki, K., Kimura-Someya, T., Suzuki, R., Aizaki, H., Ishii, K., Moriishi, K., Robison, C.S., Whitt, M.A., Miyamura, T.: Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286, 263–275 (2001)

    Article  PubMed  CAS  Google Scholar 

  50. Gospodarowicz, D., Cheng, J.: Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 128, 475–484 (1986)

    Article  PubMed  CAS  Google Scholar 

  51. Powers, C.J., McLeskey, S.W., Wellstein, A.: Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Canc. 7, 165–197 (2000)

    Article  CAS  Google Scholar 

  52. Fernig, D.G., Gallagher, J.T.: Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Progr. Growth Factor Res. 5, 353–377 (1994)

    Article  CAS  Google Scholar 

  53. Mohammadi, M., Olsen, S.K., Goetz, R.: A protein canyon in the FGF-FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Curr. Opin. Struct. Biol. 15, 506–516 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Satoko Ueno, Naoko Shoji, and Machiko Tomimatsu for technical assistance. This work was supported in part by Grants-in-aid for Scientific Research C-21590057 (to S. Y.), Scientific Research (B) 23390016 (to K. S.), and the Matching Program for Innovations in Future Drug Discovery and Medical Care (to K. S.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhei Yamada or Kazuyuki Sugahara.

Additional information

The contributions of Fumi Kobayashi and Shuhei Yamada should be considered equal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data 1

(PDF 296 kb)

Supplementary Data 2

(PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, F., Yamada, S., Taguwa, S. et al. Specific interaction of the envelope glycoproteins E1 and E2 with liver heparan sulfate involved in the tissue tropismatic infection by hepatitis C virus. Glycoconj J 29, 211–220 (2012). https://doi.org/10.1007/s10719-012-9388-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9388-z

Keywords

Navigation