Advertisement

Glycoconjugate Journal

, Volume 29, Issue 8–9, pp 585–597 | Cite as

Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content

  • Massimo Aureli
  • Rosaria Bassi
  • Alessandro Prinetti
  • Elena Chiricozzi
  • Brigida Pappalardi
  • Vanna Chigorno
  • Nadia Di Muzio
  • Nicoletta Loberto
  • Sandro SonninoEmail author
Article

Abstract

We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.

Keywords

Ceramide Glycosidases Plasma membrane Apoptosis Radiations Radiotherapy 

Notes

Acknowledgements

This work was supported by grant PRIN (Italy) to S.S.

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. 1.
    Hakomori, S.I.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309–5318 (1996)PubMedGoogle Scholar
  2. 2.
    Hakomori, S.: Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. U. S. A. 99, 10231–10233 (2002)PubMedCrossRefGoogle Scholar
  3. 3.
    Dennis, J.W., Granovsky, M., Warren, C.E.: Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999)PubMedCrossRefGoogle Scholar
  4. 4.
    Moskal, J.R., Kroes, R.A., Dawson, G.: The glycobiology of brain tumors: disease relevance and therapeutic potential. Expert. Rev. Neurother. 9, 1529–1545 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    Meany, D.L., Chan, D.W.: Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics. 8, 7 (2011)PubMedCrossRefGoogle Scholar
  6. 6.
    Sonnino, S., Aureli, M., Loberto, N., Chigorno, V., Prinetti, A.: Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett. 584, 1914–1922 (2010)PubMedCrossRefGoogle Scholar
  7. 7.
    Aureli, M., Loberto, N., Bassi, R., Ferraretto, A., Perego, S., Lanteri, P., Chigorno, V., Sonnino, S., Prinetti, A.: Plasma membrane-associated glycohydrolases activation by extracellular acidification due to proton exchangers. Neurochem Res. (2011).Google Scholar
  8. 8.
    Aureli, M., Masilamani, A.P., Illuzzi, G., Loberto, N., Scandroglio, F., Prinetti, A., Chigorno, V., Sonnino, S.: Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett. 583, 2469–2473 (2009)PubMedCrossRefGoogle Scholar
  9. 9.
    Valaperta, R., Valsecchi, M., Rocchetta, F., Aureli, M., Prioni, S., Prinetti, A., Chigorno, V., Sonnino, S.: Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J. Neurochem. 100, 708–719 (2007)PubMedCrossRefGoogle Scholar
  10. 10.
    Valaperta, R., Chigorno, V., Basso, L., Prinetti, A., Bresciani, R., Preti, A., Miyagi, T., Sonnino, S.: Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J. 20, 1227–1229 (2006)PubMedCrossRefGoogle Scholar
  11. 11.
    Aureli, M., Masilamani, A.P., Illuzzi, G., Loberto, N., Scandroglio, F., Prinetti, A., Chigorno, V., Sonnino, S.: Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett. 583, 2469–2473 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    Aureli, M., Loberto, N., Chigorno, V., Prinetti, A., Sonnino, S.: Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res. (2010)Google Scholar
  13. 13.
    Papini, N., Anastasia, L., Tringali, C., Croci, G., Bresciani, R., Yamaguchi, K., Miyagi, T., Preti, A., Prinetti, A., Prioni, S., Sonnino, S., Tettamanti, G., Venerando, B., Monti, E.: The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J. Biol. Chem. 279, 16989–16995 (2004)PubMedCrossRefGoogle Scholar
  14. 14.
    Kakugawa, Y., Wada, T., Yamaguchi, K., Yamanami, H., Ouchi, K., Sato, I., Miyagi, T.: Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc. Natl. Acad. Sci. U. S. A. 99, 10718–10723 (2002)PubMedCrossRefGoogle Scholar
  15. 15.
    Kawamura, S., Sato, I., Wada, T., Yamaguchi, K., Li, Y., Li, D., Zhao, X., Ueno, S., Aoki, H., Tochigi, T., Kuwahara, M., Kitamura, T., Takahashi, K., Moriya, S., Miyagi, T.: Plasma membrane-associated sialidase (NEU3) regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling. Cell Death Differ. (2011)Google Scholar
  16. 16.
    Ost, P., Cozzarini, C., De Meerleer, G., Fiorino, C., De Potter, B., Briganti, A., Nagler, E.V.T., Montorsi, F., Fonteyne, V. r., Di Muzio, N.: High-dose adjuvant radiotherapy after radical prostatectomy with or without androgen deprivation therapy. International Journal of Radiation Oncology*Biology*PhysicsGoogle Scholar
  17. 17.
    Group, I. M. R. T. C. W.: Intensity-modulated radiotherapy: current status and issues of interest. International Journal of Radiation Oncology*Biology*Physics. 51, 880–914 (2001)Google Scholar
  18. 18.
    Fodor, A., Fiorino, C., Dell’Oca, I., Broggi, S., Pasetti, M., Cattaneo, G., Gianolli, L., Calandrino, R., Di Muzio, N.: PET-guided dose escalation tomotherapy in malignant pleural mesothelioma. Strahlentherapie und Onkologie. 1–8Google Scholar
  19. 19.
    Zelefsky, M.J., Fuks, Z.V.I., Hunt, M., Lee, H.J., Lombardi, D., Ling, C.C., Reuter, V.E., Venkatraman, E.S., Leibel, S.A.: High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J. Urol. 166, 876–881 (2001)PubMedCrossRefGoogle Scholar
  20. 20.
    Kolesnick, R., Fuks, Z.: Radiation and ceramide-induced apoptosis. Oncogene 22, 5897–5906 (2003)PubMedCrossRefGoogle Scholar
  21. 21.
    Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z., Kolesnick, R.: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86, 189–199 (1996)PubMedCrossRefGoogle Scholar
  22. 22.
    Gulbins, E., Kolesnick, R., Quinn, P.J., Kagan, V.E.: In: Harris, J.R., Biswas, B.B., Quinn, P., (eds.): Springer US, 2004. pp. 229–244Google Scholar
  23. 23.
    Obeid, L.M., Linardic, C.M., Karolak, L.A., Hannun, Y.A.: Programmed cell death induced by ceramide. Science 259, 1769–1771 (1993)PubMedCrossRefGoogle Scholar
  24. 24.
    Haimovitz-Friedman, A., Kan, C.C., Ehleiter, D., Persaud, R.S., McLoughlin, M., Fuks, Z., Kolesnick, R.N.: Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 180, 525–535 (1994)PubMedCrossRefGoogle Scholar
  25. 25.
    Sonnino, S., Chigorno, V., Tettamanti, G.: Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol. 311, 639–656 (2000)PubMedCrossRefGoogle Scholar
  26. 26.
    Leroy, J.G., Ho, M.W., MacBrinn, M.C., Zielke, K., Jacob, J., O’Brien, J.S.: I-cell disease: biochemical studies. Pediatr. Res. 6, 752–757 (1972)PubMedCrossRefGoogle Scholar
  27. 27.
    Aureli, M., Prioni, S., Mauri, L., Loberto, N., Casellato, R., Ciampa, M.G., Chigorno, V., Prinetti, A., Sonnino, S.: Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells. J Lipid Res. 51, 798–808 (2010)PubMedCrossRefGoogle Scholar
  28. 28.
    Behrens, B.C., Hamilton, T.C., Masuda, H., Grotzinger, K.R., Whang-Peng, J., Louie, K.G., Knutsen, T., McKoy, W.M., Young, R.C., Ozols, R.F.: Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res. 47, 414–418 (1987)PubMedGoogle Scholar
  29. 29.
    Osmak, M., Eljuga, D.: The characterization of two human cervical carcinoma HeLa sublines resistant to cisplatin. Res Exp Med (Berl) 193, 389–396 (1993)CrossRefGoogle Scholar
  30. 30.
    Appierto, V., Cavadini, E., Pergolizzi, R., Cleris, L., Lotan, R., Canevari, S., Formelli, F.: Decrease in drug accumulation and in tumour aggressiveness marker expression in a fenretinide-induced resistant ovarian tumour cell line. Br. J. Cancer 84, 1528–1534 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    Zisowsky, J., Koegel, S., Leyers, S., Devarakonda, K., Kassack, M.U., Osmak, M., Jaehde, U.: Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochem. Pharmacol. 73, 298–307 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    Prinetti, A., Cao, T., Illuzzi, G., Prioni, S., Aureli, M., Gagliano, N., Tredici, G., Rodriguez-Menendez, V., Chigorno, V., Sonnino, S.: A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J. Biol. Chem. 286, 40900–40910 (2011)PubMedCrossRefGoogle Scholar
  33. 33.
    Aureli, M., Loberto, N., Lanteri, P., Chigorno, V., Prinetti, A., Sonnino, S.: Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J. Neurochem. 116, 891–899 (2011)PubMedCrossRefGoogle Scholar
  34. 34.
    Mehlen, P., Rabizadeh, S., Snipas, S.J., Assa-Munt, N., Salvesen, G.S., Bredesen, D.E.: The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395, 801–804 (1998)PubMedCrossRefGoogle Scholar
  35. 35.
    Kubbies, M.: Flow cytometric recognition of clastogen induced chromatin damage in G0/G1 lymphocytes by non-stoichiometric Hoechst fluorochrome binding. Cytometry 11, 386–394 (1990)PubMedCrossRefGoogle Scholar
  36. 36.
    Overkleeft, H.S., Renkema, G.H., Neele, J., Vianello, P., Hung, I.O., Strijland, A., van der Burg, A.M., Koomen, G.J., Pandit, U.K., Aerts, J.M.: Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J. Biol. Chem. 273, 26522–26527 (1998)PubMedCrossRefGoogle Scholar
  37. 37.
    Wang, P., Zhang, J., Bian, H., Wu, P., Kuvelkar, R., Kung, T.T., Crawley, Y., Egan, R.W., Billah, M.M.: Induction of lysosomal and plasma membrane-bound sialidases in human T-cells via T-cell receptor. Biochem. J. 380, 425–433 (2004)PubMedCrossRefGoogle Scholar
  38. 38.
    Prinetti, A., Basso, L., Appierto, V., Villani, M.G., Valsecchi, M., Loberto, N., Prioni, S., Chigorno, V., Cavadini, E., Formelli, F., Sonnino, S.: Altered Sphingolipid Metabolism in N-(4-Hydroxyphenyl)- retinamide-resistant A2780 Human Ovarian Carcinoma Cells. J. Biol. Chem. 278, 5574–5583 (2003)PubMedCrossRefGoogle Scholar
  39. 39.
    Kolter, T., Sandhoff, K.: Sphingolipids-their metabolic pathways and the pathobiochemistry of nerodegenrative diseases. Angew. Chem. Int. Ed. 38, 1532–1568 (1999)CrossRefGoogle Scholar
  40. 40.
    Goni, F.M., Alonso, A.: Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim. Biophys. Acta 1758, 1902–1921 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Huschtscha, L.I., Bartier, W.A., Ross, C.E., Tattersall, M.H.: Characteristics of cancer cell death after exposure to cytotoxic drugs in vitro. Br. J. Cancer 73, 54–60 (1996)PubMedCrossRefGoogle Scholar
  42. 42.
    Vaidya, J.S., Joseph, D.J., Tobias, J.S., Bulsara, M., Wenz, F., Saunders, C., Alvarado, M., Flyger, H.L., Massarut, S., Eiermann, W., Keshtgar, M., Dewar, J., Kraus-Tiefenbacher, U., Sütterlin, M., Esserman, L., Holtveg, H.M.R., Roncadin, M., Pigorsch, S., Metaxas, M., Falzon, M., Matthews, A., Corica, T., Williams, N.R., Baum, M.: Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. The Lancet. 376, 91–102Google Scholar
  43. 43.
    Volterrani, F., Aldrighetti, D., Bolognesi, A., Di Muzio, N., Reni, M., Ronzoni, M., Fossati, V., Villa, E., Marassi, A., Veronesi, P., et al.: Analysis of the results of 264 cases of small breast carcinoma treated with conservative surgery and radiotherapy. Radiol Med 82, 322–327 (1991)PubMedGoogle Scholar
  44. 44.
    Vojtesek, B., Lane, D.P.: Regulation of p53 protein expression in human breast cancer cell lines. J Cell Sci. 105(Pt 3), 607–612 (1993)PubMedGoogle Scholar
  45. 45.
    Ward, J.F.: The complexity of DNA damage: relevance to biological consequences. Int. J. Radiat. Biol. 66, 427–432 (1994)PubMedCrossRefGoogle Scholar
  46. 46.
    Coleman, C.N.: Beneficial liaisons: radiobiology meets cellular and molecular biology. Radiother. Oncol. 28, 1–15 (1993)PubMedCrossRefGoogle Scholar
  47. 47.
    McMillan, T.J.: Residual DNA damage: what is left over and how does this determine cell fate? Eur. J. Cancer 28, 267–269 (1992)PubMedCrossRefGoogle Scholar
  48. 48.
    Hall, E.J.: Molecular biology in radiation therapy: the potential impact of recombinant technology on clinical practice. Int. J. Radiat. Oncol. Biol. Phys. 30, 1019–1028 (1994)PubMedCrossRefGoogle Scholar
  49. 49.
    Bedford, J.S.: Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionizing radiations. Int. J. Radiat. Oncol. Biol. Phys. 21, 1457–1469 (1991)PubMedCrossRefGoogle Scholar
  50. 50.
    Harnden, D.G.: The nature of ataxia-telangiectasia: problems and perspectives. Int. J. Radiat. Biol. 66, S13–19 (1994)PubMedCrossRefGoogle Scholar
  51. 51.
    Deng, X., Yin, X., Allan, R., Lu, D.D., Maurer, C.W., Haimovitz-Friedman, A., Fuks, Z., Shaham, S., Kolesnick, R.: Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322, 110–115 (2008)PubMedCrossRefGoogle Scholar
  52. 52.
    Mesicek, J., Lee, H., Feldman, T., Jiang, X., Skobeleva, A., Berdyshev, E.V., Haimovitz-Friedman, A., Fuks, Z., Kolesnick, R.: Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal. 22, 1300–1307Google Scholar
  53. 53.
    Verheij, M., Bartelink, H.: Radiation-induced apoptosis. Cell Tissue Res. 301, 133–142 (2000)PubMedCrossRefGoogle Scholar
  54. 54.
    Chigorno, V., Sciannamblo, M., Mikulak, J., Prinetti, A., Sonnino, S.: Efflux of sphingolipids metabolically labeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid from normal cells in culture. Glycoconj. J. 23, 159–165 (2006)PubMedCrossRefGoogle Scholar
  55. 55.
    Chigorno, V., Tettamanti, G., Sonnino, S.: Metabolic processing of gangliosides by normal and Salla human fibroblasts in culture. A study performed by administering radioactive GM3 ganglioside. J. Biol. Chem. 271, 21738–21744 (1996)PubMedCrossRefGoogle Scholar
  56. 56.
    Chigorno, V., Pitto, M., Cardace, G., Acquotti, D., Kirschner, G.N., Sonnino, S., Ghidoni, R., Tettamanti, G.: Association of gangliosides to fibroblasts in culture: A study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoconj. J. V2, 279–291 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Massimo Aureli
    • 1
  • Rosaria Bassi
    • 1
  • Alessandro Prinetti
    • 1
  • Elena Chiricozzi
    • 1
  • Brigida Pappalardi
    • 2
  • Vanna Chigorno
    • 1
  • Nadia Di Muzio
    • 2
  • Nicoletta Loberto
    • 1
  • Sandro Sonnino
    • 1
    • 3
    Email author
  1. 1.Department of Medical Chemistry, Biochemistry and BiotechnologyUniversity of MilanMilanItaly
  2. 2.Department of RadiotherapyHospital San RaffaeleMilanItaly
  3. 3.Dipartimento di Chimica, Biochimica e Biotecnologie per la MedicinaUniversità degli Studi di MilanoSegrateItaly

Personalised recommendations