Skip to main content
Log in

Invasion of Trypanosoma cruzi into host cells is impaired by N-propionylmannosamine and other N-acylmannosamines

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The etiologic agent of Chagas’ disease, Trypanosoma cruzi, is widely distributed in South America, affecting millions of people with thousands of deaths every year. Adherence of the infectious trypomastigote to host cells is mediated by sialic acid. T. cruzi cannot synthesize sialic acids on their own but cleave them from the host cells and link them to glycans on the surface of the parasites using the trans-sialidase, a GPI-anchored enzyme. The infectivity of the protozoan parasites strongly depends on the activity of this enzyme. In this report, we investigated whether the transfer of sialic acids from the host to the parasites can be attenuated using novel sialic acid precursors. The cell line 86-HG-39 was infected with T. cruzi and treated with defined N-acylmannosamine analogues bearing an elongated N-acyl side-chain. By treatment of these cells the number of T.cruzi infected cell was reduced up to 60%. We also showed that the activity of the bacterial sialidase C was reduced with N-glycan substrates with elongated N-acyl side chains of the terminal sialic acids. The affinity of this sialidase decreased with the length of the N-acyl side-chain. The data presented suggest that N-acyl modified sialic acid precursors can change the transfer of sialic acids leading to modification of infection. Since the chemotherapy of this disease is inefficient and afflicted by side effects, the need of effective drugs is lasting. These findings propose a new path to prevent the dissemination of T. cruzi in the human hosts. These compounds or further modified analogues might be a basis for the search of new agents against Chagas’ disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrett, M.P., Burchmore, R.J., Stich, A., Lazzari, J.O., Frasch, A.C., Cazzulo, J.J., Krishna, S.: The trypanosomiases. Lancet 362, 1469–1480 (2003)

    Article  PubMed  Google Scholar 

  2. Abad-Franch, F., Monteiro, F.A.: Molecular research and the control of Chagas disease vectors. An. Acad. Bras. Cienc. 77, 437–454 (2005)

    PubMed  CAS  Google Scholar 

  3. Brener, Z.: Biology of Trypanosoma cruzi. Annu. Rev. Microbiol. 27, 347–382 (1973)

    Article  PubMed  CAS  Google Scholar 

  4. Monteiro, V.G., Lobato, C.S., Silva, A.R., Medina, D.V., de Oliveira, M.A., Seabra, S.H., de Souza, W., DaMatta, R.A.: Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol. Res. 97, 380–385 (2005)

    Article  PubMed  Google Scholar 

  5. Araujo-Jorge, T.C., De Souza, W.: Interaction of Trypanosoma cruzi with macrophages. Involvement of surface galactose and N-acetyl-D-galactosamine residues on the recognition process. Acta Trop. 45, 127–136 (1988)

    PubMed  CAS  Google Scholar 

  6. Monteiro, V.G., Soares, C.P., de Souza, W.: Host cell surface sialic acid residues are involved on the process of penetration of Toxoplasma gondii into mammalian cells. FEMS Microbiol. Lett. 164, 323–327 (1998)

    Article  PubMed  CAS  Google Scholar 

  7. Schauer, R., Reuter, G., Muhlpfordt, H., Andrade, A.F., Pereira, M.E.: The occurrence of N-acetyl- and N-glycoloylneuraminic acid in Trypanosoma cruzi. Hoppe Seylers Z. Physiol. Chem. 364, 1053–1057 (1983)

    Article  PubMed  CAS  Google Scholar 

  8. Schauer, R.: Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 19, 507–514 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. Varki, A.: Sialic acids in human health and disease. Trends Mol. Med. 14, 351–360 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. Varki, A.: Diversity in the sialic acids. Glycobiology 2, 25–40 (1992)

    Article  PubMed  CAS  Google Scholar 

  11. Herrmann, M., von der Lieth, C.W., Stehling, P., Reutter, W., Pawlita, M.: Consequences of a subtle sialic acid modification on the murine polyomavirus receptor. J. Virol. 71, 5922–5931 (1997)

    PubMed  CAS  Google Scholar 

  12. Keppler, O.T., Herrmann, M., von der Lieth, C.W., Stehling, P., Reutter, W., Pawlita, M.: Elongation of the N-acyl side chain of sialic acids in MDCK II cells inhibits influenza A virus infection. Biochem. Biophys. Res. Commun. 253, 437–442 (1998)

    Article  PubMed  CAS  Google Scholar 

  13. Cross, G.A., Takle, G.B.: The surface trans-sialidase family of Trypanosoma cruzi. Annu. Rev. Microbiol. 47, 385–411 (1993)

    Article  PubMed  CAS  Google Scholar 

  14. Frasch, A.C.: Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol. Today 16, 282–286 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. Schenkman, S., Jiang, M.S., Hart, G.W., Nussenzweig, V.: A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 65, 1117–1125 (1991)

    Article  PubMed  CAS  Google Scholar 

  16. Schenkman, R.P., Vandekerckhove, F., Schenkman, S.: Mammalian cell sialic acid enhances invasion by Trypanosoma cruzi. Infect. Immun. 61, 898–902 (1993)

    PubMed  CAS  Google Scholar 

  17. Erdmann, H., Steeg, C., Koch-Nolte, F., Fleischer, B., Jacobs, T.: Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell. Microbiol. 11, 1600–1611 (2009)

    Article  PubMed  CAS  Google Scholar 

  18. Tomlinson, S., Pontes de Carvalho, L.C., Vandekerckhove, F., Nussenzweig, V.: Role of sialic acid in the resistance of Trypanosoma cruzi trypomastigotes to complement. J. Immunol. 153, 3141–3147 (1994)

    PubMed  CAS  Google Scholar 

  19. Buchini, S., Buschiazzo, A., Withers, S.G.: A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors. Angew. Chem. Int. Ed Engl. 47, 2700–2703 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W.: Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001)

    Article  PubMed  CAS  Google Scholar 

  21. Keppler, O.T., Stehling, P., Herrmann, M., Kayser, H., Grunow, D., Reutter, W., Pawlita, M.: Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J. Biol. Chem. 270, 1308–1314 (1995)

    Article  PubMed  CAS  Google Scholar 

  22. Graham, F.L., Smiley, J., Russell, W.C., Nairn, R.: Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74 (1977)

    Article  PubMed  CAS  Google Scholar 

  23. Tarentino, A.L., Gomez, C.M., Plummer Jr., T.H.: Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry 24, 4665–4671 (1985)

    Article  PubMed  CAS  Google Scholar 

  24. Gohlke, M., Blanchard, V.: Separation of N-glycans by HPLC. Methods Mol. Biol. 446, 239–254 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. Blanchard, V., Gadkari, R.A., Gerwig, G.J., Leeflang, B.R., Dighe, R.R., Kamerling, J.P.: Characterization of the N-linked oligosaccharides from human chorionic gonadotropin expressed in the methylotrophic yeast Pichia pastoris. Glycoconj. J. 24, 33–47 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. Packer, N.H., Lawson, M.A., Jardine, D.R., Redmond, J.W.: A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj. J. 15, 737–747 (1998)

    Article  PubMed  CAS  Google Scholar 

  27. Bigge, J.C., Patel, T.P., Bruce, J.A., Goulding, P.N., Charles, S.M., Parekh, R.B.: Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238 (1995)

    Article  PubMed  CAS  Google Scholar 

  28. Nuck, R.: Enzymatical hydrolysis of N-glycans from glycoproteins and fluorescent labeling by 2-aminobenzamide (2-AB). Methods Mol. Biol. 446, 231–238 (2008)

    Article  PubMed  CAS  Google Scholar 

  29. Blanchard, V., Gadkari, R.A., George, A.V., Roy, S., Gerwig, G.J., Leeflang, B.R., Dighe, R.R., Boelens, R., Kamerling, J.P.: High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains—selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj. J. 25, 245–257 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. Roggentin, P., Kleineidam, R.G., Schauer, R.: Diversity in the properties of two sialidase isoenzymes produced by Clostridium perfringens spp. Biol. Chem. Hoppe Seyler 376, 569–575 (1995)

    Article  PubMed  CAS  Google Scholar 

  31. Gagiannis, D., Gossrau, R., Reutter, W., Zimmermann-Kordmann, M., Horstkorte, R.: Engineering the sialic acid in organs of mice using N-propanoylmannosamine. Biochim. Biophys. Acta 1770, 297–306 (2007)

    PubMed  CAS  Google Scholar 

  32. Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., Reutter, W.: Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992)

    PubMed  CAS  Google Scholar 

  33. Agusti, R., Paris, G., Ratier, L., Frasch, A.C., de Lederkremer, R.M.: Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Glycobiology 14, 659–670 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. Carvalho, S.T., Sola-Penna, M., Oliveira, I.A., Pita, S., Goncalves, A.S., Neves, B.C., Sousa, F.R., Freire-de-Lima, L., Kurogochi, M., Hinou, H., Nishimura, S., Mendonca-Previato, L., Previato, J.O., Todeschini, A.R.: A new class of mechanism-based inhibitors for Trypanosoma cruzi trans-sialidase and their influence on parasite virulence. Glycobiology 20, 1034–1045 (2010)

    Article  PubMed  CAS  Google Scholar 

  35. Dube, D.H., Bertozzi, C.R.: Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003)

    Article  PubMed  CAS  Google Scholar 

  36. Prioli, R.P., Rosenberg, I., Pereira, M.E.: High- and low-density lipoproteins enhance infection of Trypanosoma cruzi in vitro. Mol. Biochem. Parasitol. 38, 191–198 (1990)

    Article  PubMed  CAS  Google Scholar 

  37. Pereira, M.E., Zhang, K., Gong, Y., Herrera, E.M., Ming, M.: Invasive phenotype of Trypanosoma cruzi restricted to a population expressing trans-sialidase. Infect. Immun. 64, 3884–3892 (1996)

    PubMed  CAS  Google Scholar 

  38. Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W., Horstkorte, R.: Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J. Biol. Chem. 273, 19146–19152 (1998)

    Article  PubMed  CAS  Google Scholar 

  39. Stehle, T., Yan, Y., Benjamin, T.L., Harrison, S.C.: Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163 (1994)

    Article  PubMed  CAS  Google Scholar 

  40. Crennell, S., Garman, E., Laver, G., Vimr, E., Taylor, G.: Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 2, 535–544 (1994)

    Article  PubMed  CAS  Google Scholar 

  41. Gaskell, A., Crennell, S., Taylor, G.: The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3, 1197–1205 (1995)

    Article  PubMed  CAS  Google Scholar 

  42. Newstead, S.L., Watson, J.N., Bennet, A.J., Taylor, G.: Galactose recognition by the carbohydrate-binding module of a bacterial sialidase. Acta Crystallogr. D Biol. Crystallogr. 61, 1483–1491 (2005)

    Article  PubMed  Google Scholar 

  43. Boraston, A.B., Ficko-Blean, E., Healey, M.: Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry 46, 11352–11360 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. Muia, R.P., Yu, H., Prescher, J.A., Hellman, U., Chen, X., Bertozzi, C.R., Campetella, O. Identification of glycoproteins targeted by Trypanosoma cruzi trans-sialidase, a virulence factor that disturbs lymphocyte glycosylation. Glycobiology

  45. Buschiazzo, A., Amaya, M.F., Cremona, M.L., Frasch, A.C., Alzari, P.M.: The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol. Cell 10, 757–768 (2002)

    Article  PubMed  CAS  Google Scholar 

  46. Amaya, M.F., Watts, A.G., Damager, I., Wehenkel, A., Nguyen, T., Buschiazzo, A., Paris, G., Frasch, A.C., Withers, S.G., Alzari, P.M.: Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12, 775–784 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Zukunftsfonds der Technologiestiftung Berlin [10024148] Bundesministerium für Bildung und Forschung [InnoProfile 03IP511] and by the Sonnenfeld-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Reutter.

Additional information

Thorsten Lieke, Daniel Gröbe and Véronique Blanchard equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieke, T., Gröbe, D., Blanchard, V. et al. Invasion of Trypanosoma cruzi into host cells is impaired by N-propionylmannosamine and other N-acylmannosamines. Glycoconj J 28, 31–37 (2011). https://doi.org/10.1007/s10719-010-9321-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9321-2

Keywords

Navigation