Skip to main content

Advertisement

Log in

Excretion into feces of asialo GM1 in the murine digestive tract and Lactobacillus johnsonii exhibiting binding ability toward asialo GM1. A possible role of epithelial glycolipids in the discharge of intestinal bacteria

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In the digestive tract of mice (HR-1, 5 months old, ♀), asialo GM1 (GA1) exhibiting receptor activity toward several intestinal bacteria was preferentially expressed in the small intestine. Also, less than 10% of GA1 in the small intestine was converted into fucosylated and sulfated derivatives, but it was completely converted to fucosyl GA1 (FGA1) in the stomach, cecum and colon. Among the lipid components in these tissues, glycolipids other than Forssman antigen and cholesterol sulfate (CS) were present in the digestive tract contents. However, sulfated GA1, sulfatide and fucosyl GM1 in the gastro-intestinal contents were not present in the cecal and colonic contents, in which the major glycolipids were ceramide monohexoside (CMH), GA1 and FGA1. The total amount of GA1 in the whole contents was 20% of that in the tissues. Thus, glycolipids were stable during the process of digestion, and excreted from the body together with cholesterol and CS. On the other hand, Lactobacillus johnsonii (LJ), whose receptor is GA1, was detected in the cecal and colonic contents on sequential analysis of 16S-ribosomal RNA and TLC-immunostaining of antigenic glycolipids with anti-LJ antiserum. LJ was found to comprise 20% of the total bacteria cultured in the lactobacillus medium under aerobic conditions, and to be present in the cecal and colonic contents, 9.8 × 107 cells versus 37 μg GA1 and 1.4 × 108 cells versus 49 μg GA1, respectively. Thus, GA1 in the contents might facilitate the discharge of intestinal bacteria by becoming attached them to prevent their irregular diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CMH:

ceramide monohexoside

CS:

cholesterol sulfate

18t:0:

phytosphingosine

18d:1:

sphingosine

24h:0:

α-hydroxylignoceric acid

GA1:

asialo GM1

FGA1:

fucosyl GA1

FGM1:

fucosyl GM1

SGA1:

sulfated GA1

LJ:

Lactobacillus johnsonii

References

  1. IUPAC-IUB Commission on Biochemical Nomenclature: The Nomenclature of Lipids. Eur. J. Biochem. 179, 11–21 (1977)

    Google Scholar 

  2. Karlsson, K.A.: Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 58, 309–350 (1989)

    Article  PubMed  CAS  Google Scholar 

  3. Yamamoto, K., Miwa, T., Taniguchi, H., Nagano, T., Shimamura, K., Tanaka, T., Kumagai, H.: Binding specificity of Lactobacillus to glycolipids. Biochem. Biophys. Res. Commun. 228, 148–152 (1996)

    Article  PubMed  CAS  Google Scholar 

  4. Neeser, J.R., Granato, D., Rouvet, M., Servin, A., Teneberg, S., Karlsson, K.A.: Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10, 1193–1199 (2000)

    Article  PubMed  CAS  Google Scholar 

  5. Iwamori, M., Shibagaki, T., Nakata, Y., Adachi, S., Nomura, T.: Distribution of receptor glycolipids for lactobacilli in the murine digestive tract and production of antibodies cross-reactive with them by immunization of rabbits with lactobacilli. J. Biochem. 146, 185–191 (2009)

    Article  PubMed  CAS  Google Scholar 

  6. Lin, B., Hayashi, Y., Saito, M., Sakakibara, Y., Yanagisawa, M., Iwamori, M.: GDP-fucose: beta-galactoside alpha1, 2-fucosyltransferase, MFUT-II, and not MFUT-I or -III, is induced in a restricted region of the digestive tract of germ-free mice by host-microbe interactions and cycloheximide. Biochim. Biophys. Acta 1487, 275–285 (2000)

    PubMed  CAS  Google Scholar 

  7. Bry, L., Falk, P.G., Midtvedt, T., Gordon, J.I.: A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 1380–1383 (1996)

    Article  PubMed  CAS  Google Scholar 

  8. Iwamori, M., Domino, S.E.: Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of α(1, 2)fucosyltransferase genes. Biochem. J. 380, 75–81 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. Yoneshige, A., Sasaki, A., Miyazaki, M., Kojima, N., Suzuki, A., Matsuda, J.: Developmental changes in glycolipids and synchronized expression of nutrient transporters in the mouse small intestine. J. Nutr. Biochem. 21, 214–226 (2010)

    Article  PubMed  CAS  Google Scholar 

  10. Gustafsson, B.E., Karlsson, K.A., Larson, G., Midtvedt, T., Strömberg, N., Teneberg, S., Thurin, J.: Glycosphingolipid patterns of the gastrointestinal tract and feces of germ-free and conventional rats. J. Biol. Chem. 261, 15294–15300 (1986)

    PubMed  CAS  Google Scholar 

  11. Larson, G., Watsfeldt, P., Falk, P., Leffler, H., Koprowski, H.: Fecal excretion of intestinal glycosphingolipids by newborns and young children. FEBS Lett. 214, 41–44 (1987)

    Article  PubMed  CAS  Google Scholar 

  12. Larson, G., Falk, P., Hoskins, L.C.: Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J. Biol. Chem. 263, 10790–10798 (1988)

    PubMed  CAS  Google Scholar 

  13. Manual of microbiological culture media, Difco & BBL Manual, Becton, Dickinson and Company, Sparks, MD, USA (2003)

  14. Iwamori, M., Ohta, Y., Uchida, Y., Tsukada, Y.: Arthrobacter ureafaciens sialidase isoenzymes, L, M1 and M2, cleave fucosyl GM1. Glycoconj. J. 14, 67–73 (1997)

    Article  PubMed  CAS  Google Scholar 

  15. Iwamori, M., Kaido, T., Iwamori, Y., Ohta, Y., Tsukamoto, K., Kozaki, S.: Involvement of the C-terminal tail of Arthrobacter ureafaciens sialidase isoenzyme M in cleavage of the internal sialic acid of ganglioside GM1. J. Biochem. 138, 327–334 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. Iwamori, M., Takamizawa, K., Momoeda, M., Iwamori, Y., Taketani, Y.: Gangliosides in human, cow and goat milk, and their abilities as to neutralization of cholera toxin and botulinum type A neurotoxin. Glycoconj. J. 25, 675–683 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. Woese, C.R., Kandler, O., Wheelis, M.L.: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990)

    Article  PubMed  CAS  Google Scholar 

  18. Leffler, H., Hansson, G.C., Strömberg, N.: A novel sulfoglycosphingolipid of mouse small intestine, IV3-sulfogangliotetraosylceramide, demonstrated by negative ion fast atom bombardment mass spectrometry. J. Biol. Chem. 261, 1440–1444 (1986)

    PubMed  CAS  Google Scholar 

  19. Shaw, N.: Bacterial glycolipids. Bacteriol. Rev. 34, 365–377 (1970)

    PubMed  CAS  Google Scholar 

  20. Shaw, N., Baddiley, J.: Structure and distribution of glycosyl diglycerides in bacteria. Nature 217, 142–144 (1970)

    Article  Google Scholar 

  21. Suzuki, A., Yamakawa, T.: The different distributions of asialo GM1 and Forssman antigen in the small intestine of mouse demonstrated by immunofluorescence staining. J. Biochem. 90, 1541–1544 (1981)

    PubMed  CAS  Google Scholar 

  22. Kono, M., Dreier, J.L., Ellis, J.M., Allende, M.L., Kalkofen, D.N., Sanders, K.M., Bielawski, J., Bielawska, A., Hannun, Y.A., Proia, R.L.: Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J. Biol. Chem. 281, 7324–7331 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. Cui, Y., Iwamori, M.: Distribution of cholesterol sulfate and its anabolic and catabolic enzymes in various rabbit tissues. Lipids 32, 599–604 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. Sugiyama, T., Smith, P.F., Langworthy, T.A., Mayberry, W.R.: Immunological analysis of glycolipids and lipopolysaccharides derived from various mycoplasmas. Infect. Immun. 10, 1273–1279 (1974)

    PubMed  CAS  Google Scholar 

  25. Alving, C.R., Fowble, J.W., Joseph, K.C.: Comparative properties of four galactosyl lipids as antigens in liposomes. Immunochemistry 11, 475–481 (1974)

    Article  PubMed  CAS  Google Scholar 

  26. Hirsch, H.E., Parks, M.E.: Serological reactions against glycolipid-sensitized liposomes in multiple sclerosis. Nature 264, 785–787 (1976)

    Article  PubMed  CAS  Google Scholar 

  27. Jacobs, B.C., Rothbarth, P.H., van der Meché, F.G., Herbrink, P., Schmitz, P.I., de Klerk, M.A., van Doorn, P.A.: The spectrum of antecedent infections in Guillain-Barré syndrome: a case-control study. Neurology 51, 1110–1115 (1998)

    PubMed  CAS  Google Scholar 

  28. Houliston, R.S., Yuki, N., Hirama, T., Khieu, N.H., Brisson, J.R., Gilbert, M., Jarrell, H.C.: Recognition characteristics of monoclonal antibodies that are cross-reactive with gangliosides and lipooligosaccharide from Campylobacter jejuni strains associated with Guillain-Barré and Fisher syndromes. Biochemistry 46, 36–44 (2007)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Iwamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamori, M., Iwamori, Y., Adachi, S. et al. Excretion into feces of asialo GM1 in the murine digestive tract and Lactobacillus johnsonii exhibiting binding ability toward asialo GM1. A possible role of epithelial glycolipids in the discharge of intestinal bacteria. Glycoconj J 28, 21–30 (2011). https://doi.org/10.1007/s10719-010-9320-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9320-3

Keywords

Navigation