Skip to main content
Log in

Specificity of β1,4-galactosyltransferase inhibition by 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Inhibitors of Galactosyltransferase (GalT) have the potential of reducing the amounts of adhesive carbohydrates on secreted and cell surface-bound glycoproteins. We recently found a potent inhibitor of β4GalT, 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside (compound 612). In this work, we have tested compound 612 for the specificity of its inhibition and examined its effect on GalT, and on GlcNAc- and GalNAc-transferases in homogenates of different cell lines, as well as on recombinant glycosyltransferases. Compound 612 was found to be a specific inhibitor of β4GalT. The specificity of recombinant human β3GalT5 that also acts on GlcNAc-R substrates, revealed similarities to bovine milk β4GalT. However, 612 was a poor substrate and not an inhibitor for β3GalT5. To further determine the specific structures responsible for the inhibitory property of 612, we synthesized (2-naphthyl)-2-butanamido-2-deoxy-β-D-glucopyranosylamine (compound 629) containing nitrogen in the glycosidic linkage, and compared it to other naphthyl and quinolinyl derivatives of GlcNAc as substrates and inhibitors. Compound 629 was a substrate for both β4GalT and β3GalT5. This suggests that properties of 612 other than the presence of the naphthyl ring alone were responsible for its inhibitory action. The results suggest a usefulness of 612 in specifically blocking the synthesis of type 2 chains and thus epitopes attached to type 2 chains. In addition, 612 potently inhibits β4GalT in cell homogenates and thus allows assaying β3GalT activity in the presence of β4GalT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Bn:

benzyl

FBS:

fetal bovine serum

GalT:

galactosyltransferase

Me:

methyl

PBS:

phosphate buffered saline

Ph:

phenyl

Pnp:

p-nitrophenyl

HMBC:

Heteronuclear Multiple Bond Correlation Spectroscopy

NOESY:

Nuclear Overhauser Effect Spectroscopy

References

  1. Brockhausen, I.: Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 7, 599–604 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Galvan, M., Tsuboi, S., Fukuda, M., Baum, L.G.: Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J. Biol. Chem. 275, 16730–16737 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Nakahara, S., Raz, A.: Biological modulation by lectins and their ligands in tumor progression and metastasis. Anticancer Agents Med. Chem. 8, 22–36 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Rabinovich, G.A., Toscano, M.A., Ilarregui, J.M., Rubinstein, N.: Shedding light on the immunomodulatory properties of galectins: novel regulators of innate and adaptive immune responses. Glycoconj. J. 19, 565–573 (2004)

    Article  PubMed  Google Scholar 

  5. Ochieng, J., Furtak, V., Lukyanov, P.: Extracellular functions of galectin-3. Glycoconj. J. 19, 527–535 (2002)

    Article  CAS  Google Scholar 

  6. Perillo, N.L., Marcus, M.E., Baum, L.G.: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76, 402–412 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Jørgensen, T., Berner, A., Kaalhus, O., Tveter, K.J., Danielsen, H.E., Bryne, M.: Up-regulation of the oligosaccharide sialyl LewisX: a new prognostic parameter in metastatic prostate cancer. Cancer Res. 55, 1817–1819 (1995)

    PubMed  Google Scholar 

  8. Fuster, M.M., Brown, J.R., Wang, L., Esko, J.D.: A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res. 63, 2775–2781 (2003)

    CAS  PubMed  Google Scholar 

  9. Brown, J.R., Yang, F., Sinha, A., Ramakrishnan, B., Tor, Y., Qasba, P.K., Esko, J.D.: Deoxygenated disaccharide analogs as specific inhibitors of β1-4- galactosyltransferase 1 and selectin-mediated tumor metastasis. J. Biol. Chem. 284, 4952–4959 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. Barthel, S.R., Wiese, G.K., Cho, J., Opperman, M.J., Hays, D.L., Siddiqui, J., Pienta, K.J., Furie, B., Dimitroff, C.J.: Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc. Natl Acad. Sci. USA 106, 19491–19496 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Hennet, T.: The galactosyltransferase family. Cell. Mol. Life Sci. 59, 1081–1095 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Amado, M., Almeida, R., Carneiro, F., Levery, S.B., Holmes, E.H., Nomoto, M., Hollingsworth, M.A., Hassan, H., Schwientek, T., Nielsen, P.A., Bennett, E.P., Clausen, H.: A family of human beta 3-galactosyltransferases. Characterization of four members of a UDP-galactose: beta-N-acetyl-glucosamine/beta-nacetyl- galactosamine beta-1, 3-galactosyltransferase family. J. Biol. Chem. 273, 12770–12778 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Almeida, R., Amado, M., David, L., Levery, S.B., Holmes, E.H., Merkx, G., van Kessel, A.G., Rygaard, E., Hassan, H., Bennett, E., Clausen, H.: A family of human beta4-galactosyltransferases. Cloning and expression of two novel UDP-galactose:beta-n-acetylglucosamine beta1, 4-galactosyltransferases, beta4Gal-T2 and beta4Gal-T3. J. Biol. Chem. 272, 31979–31991 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Renkonen, J., Paavonen, T., Renkonen, R.: Endothelial and epithelial expression of sialyl Lewis(x) and sialyl Lewis(a) in lesions of breast carcinoma. Int. J. Cancer 74, 296–300 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Seko, A., Ohkura, T., Kitamura, H., Yonezawa, S., Sato, E., Yamashita, K.: Quantitative Differences in GlcNAc:beta} 1- > 3 and GlcNAc:{beta} 1- > -4 Galactosyltransferase Activities between Human Colonic Adenocarcinomas and Normal Colonic Mucosa. Cancer Res. 56, 3468–3473 (1996)

    CAS  PubMed  Google Scholar 

  16. Isshiki, S., Kudo, T., Nishihara, S., Ikehara, Y., Togayachi, A., Furuya, A., Shitara, K., Kubota, T., Watanabe, M., Kitajima, M., Narimatsu, H.: Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins. J. Biol. Chem. 278, 36611–36620 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Salvini, R., Bardoni, A., Valli, M., Trinchera, M.: beta 1, 3-Galactosyltransferase beta 3Gal-T5 acts on the GlcNAcbeta 1– > 3Galbeta 1– > 4GlcNAcbeta 1– > R sugar chains of carcinoembryonic antigen and other N-linked glycoproteins and is down-regulated in colon adenocarcinomas. J. Biol. Chem. 276, 3564–3573 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, D., Berger, E.G., Hennet, T.: Molecular cloning of a human UDP- galactose:GlcNAcbeta1, 3GalNAc beta1, 3 galactosyltransferase gene encoding an O- linked core3-elongation enzyme. Eur. J. Biochem. 263, 571–576 (1999)

    Article  CAS  PubMed  Google Scholar 

  19. Isshiki, S., Togayachi, A., Kudo, T., Nishihara, S., Watanabe, M., Kubota, T., Kitajima, M., Shiraishi, N., Sasaki, K., Andoh, T., Narimatsu, H.: Cloning, expression, and characterization of a novel UDP-galactose:beta-N-acetylglucosamine beta1, 3-galactosyltransferase (beta3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom. J. Biol. Chem. 274, 12499–12507 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Lin, C.H., Fan, Y.Y., Chen, Y.Y., Wang, S.H., Chen, C.I., Yu, L.C., Khoo, K.H.: Enhanced expression of beta 3-galactosyltransferase 5 activity is sufficient to induce in vivo synthesis of extended type 1 chains on lactosylceramides of selected human colonic carcinoma cell lines. Glycobiology 19, 418–427 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Odunsi, K., Ghamande, S., Chandrasekaran, E.V., Ta, A., Moysich, K.B., Driscoll, D., Matta, K., Lele, S.: Evaluation of beta1, 4-galactosyltransferase as a potential biomarker for the detection of subclinical disease after the completion of primary therapy for ovarian cancer. Am. J. Obstet. Gynecol. 187, 575–580 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Ichikawa, T., Nakayama, J., Sakura, N., Hashimoto, T., Fukuda, M., Fukuda, M.N., Taki, T.: Expression of N-acetyllactosamine and beta1, 4-galactosyltransferase (beta4GalT-I) during adenoma-carcinoma sequence in the human colorectum. J. Histochem. Cytochem. 47, 1593–1602 (1999)

    CAS  PubMed  Google Scholar 

  23. Xu, S., Zhu, X., Zhang, S., Yin, S., Zhou, L., Chen, C., Gu, J.: Over-expression of beta- 1, 4-galactosyltransferase I, II, and V in human astrocytoma. J. Cancer Res. Clin. Oncol. 127, 502–506 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X., Lehotay, M., Anastassiades, T., Harrison, M., Brockhausen, I.: The effect of TNF-alpha on glycosylation pathways in bovine synoviocytes. Biochem. Cell Biol. 82, 559–568 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. García-Vallejo, J.J., van Dijk, W., van Die, I., Gringhuis, S.I.: Tumor necrosis factor-alpha up-regulates the expression of beta1, 4-galactosyltransferase I in primary human endothelial cells by mRNA stabilization. J. Biol. Chem. 280, 12676–12682 (2005)

    Article  PubMed  Google Scholar 

  26. Brockhausen, I., Benn, M., Bhat, S., Marone, S., Riley, J.G., Montoya-Peleaz, P., Vlahakis, J.Z., Paulsen, H., Schutzbach, J.S., Szarek, W.A.: UDP-Gal: GlcNAc-R beta1, 4-galactosyltransferase–a target enzyme for drug design. Acceptor specificity and inhibition of the enzyme. Glycoconj. J. 23, 525–541 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Yang, X., Newmarch, K., Szarek, W.A., Brockhausen, I.: Modification of glycosylation alters the adherence of Pseudomonas aeruginosa and Burkholderia cenocepacia to human lung cancer cells. Glycoconj. J. 26, 7 (2009)

    Google Scholar 

  28. Schutzbach, J., Brockhausen, I.: Inhibition of glycosyltransferase activities as the basis for drug development. Methods Mol. Biol. 534, 359–373 (2009)

    CAS  PubMed  Google Scholar 

  29. Brockhausen, I., Carran, J., McEleney, K., Lehotay, M., Yang, X., Yin, L., Anastassiades, T.: N-Acyl derivatives of glucosamine as acceptor substrates for galactosyltransferase from bone and cartilage cells. Carbohydr. Res. 340, 1997–2003 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Möller, G., Reck, F., Paulsen, H., Kaur, K.J., Sarkar, M., Schachter, H., Brockhausen, I.: Control of glycoprotein synthesis: substrate specificity of rat liver UDP-GlcNAc: Manα3R β2-N-acetylglucosaminyl-transferase I using synthetic substrate analogues. Glycoconj. J. 9, 180–190 (1992)

    Article  PubMed  Google Scholar 

  31. Reck, F., Meinjohanns, E., Springer, M., Wilkens, R., Dorst, J.A.L.M., Paulsen, H., Möller, G., Brockhausen, I., Schachter, H.: Synthetic substrate analogues for UDP- GlcNAc: Manα1-6R β (1-2)-N-acetylglucosaminyltransferase II. Substrate specificity and inhibitors for the enzyme. Glycoconj. J. 11, 210–216 (1994)

    Article  CAS  PubMed  Google Scholar 

  32. Brockhausen, I., Dowler, T., Paulsen, H.: Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Biochim. Biophys. Acta 1790, 1244–1257 (2009)

    CAS  PubMed  Google Scholar 

  33. Brockhausen, I., Reck, F., Kuhns, W., Khan, S., Matta, K.L., Meinjohanns, E., Paulsen, H., Shah, R.N., Baker, M.A., Schachter, H.: Substrate specificity and inhibition of UDP- GlcNAc: GlcNAcβ1-2Manβ1-6R β6-N-acetylglucosaminyltransferase V using synthetic substrate analogues. Glycoconj. J. 12, 371–379 (1995)

    Article  CAS  PubMed  Google Scholar 

  34. Homa, F.L., Baker, C.A., Thomsen, D.R., Elhammer, A.P.: Conversion of a bovine UDP-GalNAc:polypeptide, N-acetylgalactosaminyltransferase to a soluble, secreted enzyme, and expression in Sf9 cells. Protein Expr. Purif. 6, 141–148 (1995)

    Article  CAS  PubMed  Google Scholar 

  35. Toki, D., Sarkar, M., Yip, B., Reck, F., Joziasse, D., Fukuda, M., Schachter, H., Brockhausen, I.: Expression of stable human O-glycan core 2 beta-1, 6-N- acetylglucosaminyltransferase in Sf9 insect cells. Biochem. J. 325(Pt 1), 63–69 (1997)

    CAS  PubMed  Google Scholar 

  36. Kost, T.A., Condreay, J.P., Jarvis, D.L.: Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Ponticelli, F., Trendafilova, A., Valoti, M., Saponara, S., Sgaragli, G.: Synthesis and antiperoxidant activity of new phenolic O-glycosides. Carbohydr. Res. 330, 459–468 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. Qasba, P.K., Ramakrishnan, B., Boeggeman, E.: Structure and Function of β-1, 4- Galactosyltransferase. Curr. Drug Targets 9, 292–309 (2008)

    Article  CAS  PubMed  Google Scholar 

  39. Ramakrishnan, B., Boeggeman, E., Ramasamy, V., Qasba, P.K.: Structure and catalytic cycle of beta-1, 4-galactosyltransferase. Curr. Opin. Struct. Biol. 14, 593–600 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. Turco, S.J., Heath, E.C.: The molecular and catalytic properties of galactosyltransferase from fetal calf serum. Arch. Biochem. Biophys. 176, 352–357 (1976)

    Article  CAS  PubMed  Google Scholar 

  41. Pollex-Krüger, A., Meyer, B., Stuike-Prill, R., Sinnwell, V., Matta, K.L., Brockhausen, I.: Preferred Conformations and Dynamics of five core structures of mucin-type O-glycans determined by NMR spectroscopy and force field calculations. Glycoconj. J. 10, 365–380 (1993)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was carried out with funding from the Canadian Cystic Fibrosis Foundation, and the Prostate Cancer Fight Foundation. The authors are grateful to Don Jarvis, University of Wyoming, USA, for the expression of β3GalT 1 and 2 proteins, and to Henrik Clausen, University of Denmark, Copenhagen, for plasmids containing β3GalT 1, 2 genes, as well as recombinant β3GalT5 and antibodies to the enzyme. We thank John Allingham, Queen’s University, Canada, for help with enzyme purification and modeling, John Schutzbach for critical comments, and Francoise Sauriol for NMR experiments. The authors also thank Joanne Berridge, Laura Burnes, and Azza Eissa for performing glycosyltransferase assays and HPLC separations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inka Brockhausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Lazar, C., Szarek, W.A. et al. Specificity of β1,4-galactosyltransferase inhibition by 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside. Glycoconj J 27, 673–684 (2010). https://doi.org/10.1007/s10719-010-9312-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9312-3

Keywords

Navigation