Skip to main content
Log in

Brief report: a new profile of terminal N-acetyllactosamines glycans on pig red blood cells and different expression of α-galactose on Sika deer red blood cells and nucleated cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

It has been reported that: (1) large variations were found in the number of sialic acid (SA) capped with N-acetyllactosamines (SA-Galβ1-4GlcNAc-R) and α-Gal epitopes (Galα1-3Galβ1-4GlcNAc-R) or uncapped N-acetyllactosamines (Galβ1-4GlcNAc-R) on different mammalian red blood cells, and on nucleated cells originating from a given tissue in various species; (2) goat, sheep, horse and mouse red blood cells lack α-Gal epitopes, despite the expression of this epitope on a variety of nucleated cells in these species, including lymphocytes differentiated from the same hematopoietic origin. In this study, flow cytometry and Western blot analyses of pig red blood cells showed that α-Gal epitopes on pig red cells developed concomitantly after treatment with neuraminidase, suggesting that the terminal N-acetyllactosaminide glycans were capped with SA-α-Gal epitopes. Whereas, the expression of the α-Gal epitopes on red blood cells from Sika deer (Cevus nippon hortulorum) were found to be absent even though the epitopes were present on their white blood cells. Thus, these results add new data not only for the terminal carbohydrate structures on cell surface glycans of various mammalian cells, but also for wide variety of epitope expression on the cells from different tissues, which might be useful for understanding their unique states resulting from differentiation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α-Gal:

Galα1-3Galβ1-4GlcNAc

FACS:

Fluorescent activated cell sorting

FCM:

Flow cytometry

FITC:

Fluorescein isothiocyanate

GlcNAc:

N-acetylglucosamine

GS-IB4:

Griffonia simplicifolia isolectin B4

hRBC-A and hRBC-O:

Group A and O of human red blood cell

M86:

Mouse monoclonal antibody to α-gal epitopes

NeuGc:

N-glycolylneuraminic acid

N-acetyllactosamine:

Galβ1-4GlcNAc-R

PBS:

Phosphate buffered saline

PK15:

Pig kidney cell line

PVDF:

Polyvinyidene fluoride

SA:

Sialic acid

TBST:

Tris-buffered saline, 0.1% Tween 20

References

  1. Galili, U., Clark, M.R., Shohet, S.B., Buehler, J., Macher, B.A.: Evolutionary relationship between the anti-Gal antibody and the Galα1→3Gal epitope in primates. Proc. Natl. Acad. Sci. USA 84, 1369–1373 (1987)

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki, N., Laskowski Jr., M., Lee, Y.C.: Phylogenetic expression of Galα1-4Gal on avian glycoproteins: Glycan differentiation inscribed in the early history of modern birds. Proc. Natl. Acad. Sci. USA 101, 9023–9028 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Suzuki, N., Laskowski Jr., M., Lee, Y.C.: Tracing the history of Galα1-4Gal on glycoproteins in modern birds. Biochim. Biophys. Acta 1760, 538–546 (2006)

    PubMed  CAS  Google Scholar 

  4. Dennis, J.W., Granovsky, M., Warren, C.E.: Protein glycosylation in development and disease. BioEssays 21, 412–421 (1999)

    Article  PubMed  CAS  Google Scholar 

  5. Gagneux, P., Varki, A.: Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999)

    Article  PubMed  CAS  Google Scholar 

  6. Hakomori, S.: Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 491, 369–402 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. Ezzelarab, M., Ayares, D., Cooper, D.K.C.: Carbohydrates in xenotransplantation. Immunol. Cell Biol. 83, 396–404 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. Whiteheart, S.W., Hart, G.W.: Sialyltransferases as specific cell surface probes of terminal and penultimate saccharide structures on living cells. Anal. Biochem. 163, 123–135 (1987)

    Article  PubMed  CAS  Google Scholar 

  9. Ogawa, H., Galili, U.: Profiling terminal N-acetyllactosamines of glycans on mammalian cells by an immuno-enzymatic assay. Glycoconj. J. 23, 663–674 (2006)

    Article  PubMed  CAS  Google Scholar 

  10. Osman, N., Merkenzie, I.F.C., Ostenried, K., Ioannou, Y.A., Desnick, R.J., Sandrin, M.S.: Combined transgenic expression of a-galactosidase and a1, 2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galα(1, 3)Gal. Proc. Natl. Acad. Sci. USA 94, 14677–14682 (1997)

    Article  PubMed  CAS  Google Scholar 

  11. Cooper, D.K.C.: Alpha1, 3-Galactosyltransferase gene-knockout was an essential step towards successful pig organ transplantation in primates. Xenotransplantation 14, 182–183 (2007)

    Article  Google Scholar 

  12. Rouhani, F.J., Dor, F.J.M.F., Cooper, D.K.C.: Investigation of red blood cells from α1, 3-galactosyltransferase knockout pigs for human blood transfusion. Transfusion 44, 1004–1012 (2004)

    Article  PubMed  Google Scholar 

  13. Eckermann, J.M., Buhler, L.H., Zhu, A., Dor, F.J.M.F., Awwad, M., Cooper, D.K.C.: Initial investigation of the potential of modified porcine erythrocytes for transfusion in primates. Xenotransplantation 11, 18–26 (2004)

    Article  PubMed  Google Scholar 

  14. Dor, F.J., Rouhani, F.J., Copper, D.K.C.: Transfusion of pig red blood cells into baboons. Xenotransplantation 11, 295–297 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. Liu, Q.P., Sulzenbacher, G., Yuan, H., Bennett, E.P., Pietz, G., Saunders, K., Spence, J., Nudelman, E., Levery, S.B., White, T., Neveu, J.M., Lane, W.S., Bourne, Y., Olsson, M.L., Henrissat, B., Clausen, H.: Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. Galili, U., Shohet, S.B., Kobrin, E., Stults, C.L., Macher, B.A.: Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263, 17755–17762 (1988)

    PubMed  CAS  Google Scholar 

  17. Larsen, R.D., Rivera-Marrero, C.A., Ernst, L.K., Cummings, R.D., Lowe, J.B.: Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:beta-D-Gal(1, 4)-D-GlcNAc alpha(1, 3)-galactosyltransferase cDNA. J. Biol. Chem. 265, 7055–7061 (1990)

    PubMed  CAS  Google Scholar 

  18. Galili, U., Swanson, K.: Gene sequences suggest inactivation of alpha-1, 3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Natl. Acad. Sci. USA 88, 7401–7404 (1991)

    Article  PubMed  CAS  Google Scholar 

  19. Joziasse, D.H., Shaper, J.H., Jabs, E., Shaper, N.L.: Characterization of an alpha 1-3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene. J. Biol. Chem. 266, 6991–6998 (1991)

    PubMed  CAS  Google Scholar 

  20. Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T., Suzuki, A.: The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273, 15866–15871 (1998)

    Article  PubMed  CAS  Google Scholar 

  21. Koyama, K., Matsuda, H., Yokoyama, I., Takagi, H.: Significance of histochemical expression of Hanganutziu–Deicher antigens in pigs, baboon and human tissues. Transplant. Proc. 31, 942–944 (1999)

    Article  PubMed  Google Scholar 

  22. Galili, U., Rachmilewitz, E.A., Peleg, A., Flechner, I.: A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J. Exp. Med. 160, 1519–1531 (1984)

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi, T., Yokoyama, I., Suzuki, A., Abe, M., Hayashi, S., Matsuda, H., Morozumi, K., Breimer, M.E., Rydberg, L., Groth, C.G., Tibell, A., Korsgren, O., Takagi, H., Nakao, A.: Lack of antibody production against Hanganutziu–Deicher (H–D) antigens with N-glycolylneuraminic acid in patients with porcine exposure history. Xenotransplantation 7, 177–180 (2000)

    Article  PubMed  CAS  Google Scholar 

  24. Buhler, L., Xu, Y., Li, W.: An investigation of the specificity of induced anti-pig antibodies in baboons. Xenotransplantation 10, 88–93 (2003)

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi, T., Ezzelarab, M.: Glycobiology relating to xenotransplantation. Curr. Opin. Organ Transplant. 11, 154–159 (2006)

    Article  Google Scholar 

  26. Miwa, Y., Kobayashi, T., Nagasaka, T., Liu, D., Yu, M., Yokoyama, I., Suzuki, A., Nakao, A.: Are N-glycolylneuraminic acid (Hanganutziu–Deicher) antigens important in pig-to-human xenotransplantation? Xenotransplantation 11, 247–253 (2004)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Specific-Pathogen-Free Pig Breeding Center of Beijing for providing pig blood samples. We thank Bo Dong for the flow cytometric analysis. This study was supported by grants from the National Basic Research Program of China (NBRPC, no.2002CB713804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Gong or Yangpei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Y., Gong, F., Li, S. et al. Brief report: a new profile of terminal N-acetyllactosamines glycans on pig red blood cells and different expression of α-galactose on Sika deer red blood cells and nucleated cells. Glycoconj J 27, 427–433 (2010). https://doi.org/10.1007/s10719-010-9289-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9289-y

Keywords

Navigation