Skip to main content

Advertisement

Log in

Development of a mouse monoclonal antibody against the chondroitin sulfate-protein linkage region derived from shark cartilage

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosaminoglycans (GAGs) like chondroitin sulfate (CS) and heparan sulfate (HS) are synthesized on the tetrasaccharide linkage region, GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser, of proteoglycans. The Xyl can be modified by 2-O-phosphate in both CS and HS, whereas the Gal residues can be sulfated at C-4 and/or C-6 in CS but not in HS. To study the roles of these modifications, monoclonal antibodies were developed against linkage glycopeptides of shark cartilage CS proteoglycans, and one was characterized in detail. This antibody bound hexa- and pentasaccharide-peptides more strongly than unsaturated tetrasaccharide-peptides with the unnatural fourth sugar residue (unsaturated hexuronic acid), suggesting the importance of the fifth and/or fourth saccharide residue GalNAc-5 and/or GlcA-4. Its reactivity was not affected by treatment with chondro-4-sulfatase or alkaline phosphatase, suggesting that 4-O-sulfate on the Gal residues and 2-O-phosphate on the Xyl residue were not recognized. Treatment with weak alkali to cleave the Xyl-Ser linkage completely abolished the binding activity, suggesting the importance of the peptide moiety of the hexasaccharide-peptide for the binding. Based on the amino acid composition and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses, it was revealed that the peptide moiety is composed of four amino acids, Ser, Pro, Gly, and Glu. Furthermore, the antibody stained wild-type CHO cells significantly, but much weakly mutant cells deficient in xylosyl- or galactosyltransferase-I required for the biosynthesis of the linkage region. These results suggest that the antibody recognizes the structure GalNAc(±6-O-sulfate)-GlcA-Gal-Gal-Xyl-Ser-(Pro, Gly, Glu). The antibody will be a useful tool for investigating the significance of the linkage region in the biosynthesis and/or intracellular transport of different GAG chains especially since such tools to study the linkage region are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2AB:

2-aminobenzamide

BSA:

bovine serum albumin

CS:

chondroitin sulfate

DS:

dermatan sulfate

ELISA:

enzyme-linked immunosorbent assay

GAG:

glycosaminoglycan

Gal:

D-galactose

GalNAc:

N-acetyl-D-galactosamine

GlcA:

D-glucuronic acid

GlcN:

D-glucosamine

GlcNAc:

N-acetyl-D-glucosamine

Hep:

heparin

∆HexA:

4,5-unsaturated hexuronic acid or 4-deoxy-α-L-threo-hex-4-enepyranosyluronic acid

HPLC:

high performance liquid chromatography

HS:

heparan sulfate

IdoA:

L-iduronic acid

PG:

proteoglycan

Xyl:

D-xylose

References

  1. Bishop, J.R., Schuksz, M., Esko, J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. Sugahara, K., Mikami, T.: Chondroitin/dermatan sulfate in the central nervous system. Curr. Opin. Struct. Biol. 17, 536–545 (2007)

    Article  PubMed  CAS  Google Scholar 

  3. Yamada, S., Sugahara, K.: Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr. Drug. Discov. Technol. 5, 289–301 (2008)

    Article  PubMed  CAS  Google Scholar 

  4. Nadanaka, S., Kitagawa, H.: Heparan sulphate biosynthesis and disease. J. Biochem. 144, 7–14 (2008)

    Article  PubMed  CAS  Google Scholar 

  5. Lindahl, U., Rodén, L.: Carbohydrate-protein linkages in proteoglycans of animal, plant and bacterial origin. In: Gottschalk, A. (ed.) Glycoproteins, pp. 491–517. Elsevier Science Publishing Co., Inc., New York (1972)

    Google Scholar 

  6. Sugahara, K., Kitagawa, H.: Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10, 518–527 (2000)

    Article  PubMed  CAS  Google Scholar 

  7. Sugahara, K., Yamashina, I., de Waard, P., van Halbeek, H., Vliegenthart, J.F.G.: Structural studies on sulfated glycopeptides from the carbohydrate-protein linkage region of chondroitin 4-sulfate proteoglycans of swarm rat chondrosarcoma. J. Biol. Chem. 263, 10168–10174 (1988)

    PubMed  CAS  Google Scholar 

  8. Lauder, R.M., Huckerby, T.N., Nieduszynski, I.A.: Increased incidence of unsulphated and 4-sulphated residues in the chondroitin sulphate linkage region observed by high-pH anion-exchange chromatography. Biochem. J. 347, 339–348 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. Ueno, M., Yamada, S., Zako, M., Bernfield, M., Sugahara, K.: Structural characterization of heparan sulfate and chondroitin sulfate of syndecan-1 purified from normal murine mammary gland epithelial cells. J. Biol. Chem. 276, 29134–29140 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. Gulberti, S., Lattard, V., Fondeur, M., Jacquinet, J.C., Mulliert, G., Netter, P., Magdalou, J., Ouzzine, M., Fournel-Gigleux, S.: Phosphorylation and sulfation of oligosaccharide substrates critically influence the activity of human β1, 4-galactosyltransferase 7 (GalT-I) and β1, 3-glucuronosyltransferase I (GlcAT-I) involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 280, 1417–1425 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. Tone, Y., Pedersen, L.C., Yamamoto, T., Izumikawa, T., Kitagawa, H., Nishihara, J., Tamura, J., Negishi, M., Sugahara, K.: 2-O-Phosphorylation of xylose and 6-O-sulfation of galactose in the protein linkage region of glycosaminoglycans influence the glucuronyltransferase-I activity involved in the linkage region synthesis. J. Biol. Chem. 283, 16801–16807 (2008)

    Article  PubMed  CAS  Google Scholar 

  12. Ito, Y., Hikino, M., Yajima, Y., Mikami, T., Sirko, S., von Holst, A., Faissner, A., Fukui, S., Sugahara, K.: Structural characterization of the epitopes of the monoclonal antibodies 473HD, CS-56, and MO-225 specific for chondroitin sulfate D-type using the oligosaccharide library. Glycobiology 15, 593–603 (2005)

    Article  PubMed  CAS  Google Scholar 

  13. Pothacharoen, P., Kalayanamitra, K., Deepa, S.S., Fukui, S., Hattori, T., Fukushima, N., Hardingham, T., Kongtawelert, P., Sugahara, K.: Two related but distinct chondroitin sulfate mimetope octasaccharide sequences recognized by monoclonal antibody WF6. J. Biol. Chem. 282, 35232–35246 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. Deepa, S.S., Kalayanamitra, K., Ito, Y., Kongtawelert, P., Fukui, S., Yamada, S., Mikami, T., Sugahara, K.: Novel sulfated octa- and decasaccharides from squid cartilage chondroitin sulfate E. Biochemistry 46, 2453–2465 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. Deepa, S.S., Yamada, S., Fukui, S., Sugahara, K.: Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiology 17, 631–645 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. Purushothaman, A., Fukuda, J., Mizumoto, S., ten Dam, G.B., van Kuppevelt, T.H., Kitagawa, H., Mikami, T., Sugahara, K.: Functions of chondroitin sulfate/dermatan sulfate chains in brain development. J. Biol. Chem. 282, 19442–19452 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. Maeda, N., He, J., Yajima, Y., Mikami, T., Sugahara, K., Yabe, T.: Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule. J. Biol. Chem. 278, 35805–35811 (2003)

    Article  PubMed  CAS  Google Scholar 

  18. Pothacharoen, P., Siriaunkgul, S., Ong-Chai, S., Supabandhu, J., Kumja, P., Wanaphirak, C., Sugahara, K., Hardingham, T., Kongtawelert, P.: Raised serum chondroitin sulfate epitope level in ovarian epithelial cancer. J. Biochem. 140, 517–524 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. ten Dam, G.B., van de Westerlo, E.M., Purushothaman, A., Stan, R.V., Bulten, J., Sweep, F.C., Massuger, L.F., Sugahara, K., van Kuppevelt, T.H.: Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding. Am. J. Pathol. 171, 1324–1333 (2007)

    Article  PubMed  Google Scholar 

  20. Nakagawa, H., Hama, Y., Sumi, T., Li, S.C., Maskos, K., Kalayanamitra, K., Mizumoto, S., Sugahara, K., Li, Y.T.: Occurrence of a nonsulfated chondroitin proteoglycan in the dried saliva of Collocalia swiftlets (edible bird’s-nest). Glycobiology 17, 157–164 (2007)

    Article  PubMed  CAS  Google Scholar 

  21. Sugahara, K., Masuda, M., Harada, T., Yamashina, I., de Waard, P., Vliegenthart, J.F.G.: Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin sulfate proteoglycans of whale cartilage. Eur. J. Biochem. 202, 805–811 (1991)

    Article  PubMed  CAS  Google Scholar 

  22. Sugahara, K., Ohi, Y., Harada, T., de Waard, P., Vliegenthart, J.F.G.: Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. J. Biol. Chem. 267, 6027–6035 (1992)

    PubMed  CAS  Google Scholar 

  23. Esko, J.D., Stewart, T.E., Taylor, W.H.: Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. USA. 82, 3197–3201 (1985)

    Article  PubMed  CAS  Google Scholar 

  24. Esko, J.D., Weinke, J.L., Taylor, W.H., Ekborg, G., Rodén, L., Anantharamaiah, G., Gawish, A.: Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J. Biol. Chem. 262, 12189–12195 (1987)

    PubMed  CAS  Google Scholar 

  25. Sakaguchi, H., Watanabe, M., Ueoka, C., Sugiyama, E., Taketomi, T., Yamada, S., Sugahara, K.: Isolation of reducing oligosaccharide chains from the chondroitin/dermatan sulfate-protein linkage region and preparation of analytical probes by fluorescent labeling with 2-aminobenzamide. J. Biochem. 129, 107–118 (2001)

    PubMed  CAS  Google Scholar 

  26. Rio, S., Beau, J.M., Jacquinet, J.C.: Synthesis of sulfated and phosphorylated glycopeptides from the carbohydrate-protein linkage region of proteoglycans. Carbohydr. Res. 255, 103–124 (1994)

    Article  PubMed  CAS  Google Scholar 

  27. de Waard, P., Vliegenthart, J.F.G., Harada, T., Sugahara, K.: Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. J. Biol. Chem. 267, 6036–6043 (1992)

    PubMed  Google Scholar 

  28. Ludwigs, U., Elgavish, A., Esko, J.D., Meezan, E., Rodén, L.: Reaction of unsaturated uronic acid residues with mercuric salts. Biochem. J. 245, 795–804 (1987)

    PubMed  CAS  Google Scholar 

  29. Kusche, M., Lindahl, U., Enerbäck, L., Rodén, L.: Identification of oversulphated galactosaminoglycans in intestinal-mucosal mast cells of rats infected with the nematode worm Nippostrongylus brasiliensis. Biochem. J. 253, 885–893 (1988)

    PubMed  CAS  Google Scholar 

  30. Yoshida, K., Arai, M., Kohno, Y., Maeyama, K., Miyazono, H., Kikuchi, H., Morikawa, K., Tawada, A., Suzuki, S.: Activity of bacterial eliminases towards dermatan sulphates and dermatan sulphate proteoglycan. In: Scott, J.E. (ed.) Dermatan Sulphate Proteoglycans, pp. 55–70. Portland, London (1993)

    Google Scholar 

  31. Yamagata, T., Saito, H., Habuchi, O., Suzuki, S.: Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243, 1523–1535 (1968)

    PubMed  CAS  Google Scholar 

  32. Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962)

    Article  PubMed  CAS  Google Scholar 

  33. May, R.J., Beenhouwer, D.O., Scharff, M.D.: Antibodies to keyhole limpet hemocyanin cross-react with an epitope on the polysaccharide capsule of Cryptococcus neoformans and other carbohydrates. J. Immunol. 171, 4905–4912 (2003)

    PubMed  CAS  Google Scholar 

  34. Heinegård, D.: Hyaluronidase digestion and alkaline treatment of bovine tracheal cartilage proteoglycans. Biochim. Biophys. Acta 285, 193–207 (1972)

    PubMed  Google Scholar 

  35. Sugahara, K., Kojima, T.: Specificity studies of bacterial sulfatases by means of structurally defined sulfated oligosaccharides isolated from shark cartilage chondroitin sulfate D. Eur. J. Biochem. 239, 865–870 (1996)

    Article  PubMed  CAS  Google Scholar 

  36. Sugiyama, E., Hara, A., Uemura, K., Taketomi, T.: Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction to ganglioside analyses. Glycobiology 7, 719–724 (1997)

    Article  PubMed  CAS  Google Scholar 

  37. van Roij, M.H., Mizumoto, S., Yamada, S., Morgan, T., Tan-Sindhunata, M.B., Meijers-Heijboer, H., Verbeke, J.I., Markie, D., Sugahara, K., Robertson, S.P.: Spondyloepiphyseal dysplasia, Omani type: further definition of the phenotype. Am. J. Med. Genet. A. 146A, 2376–2384 (2008)

    Google Scholar 

  38. Mikami, T., Mizumoto, S., Kago, N., Kitagawa, H., Sugahara, K.: Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor. J. Biol. Chem. 278, 36115–36127 (2003)

    Article  PubMed  CAS  Google Scholar 

  39. Kitagawa, H., Tsutsumi, K., Ikegami-Kuzuhara, A., Nadanaka, S., Goto, F., Ogawa, T., Sugahara, K.: Sulfation of the galactose residues in the glycosaminoglycan-protein linkage region by recombinant human chondroitin 6-O-sulfotransferase-1. J. Biol. Chem. 283, 27438–27443 (2008)

    Article  PubMed  CAS  Google Scholar 

  40. Moses, J., Oldberg, Å., Fransson, L.-Å.: Initiation of galactosaminoglycan biosynthesis. Separate galactosylation and dephosphorylation pathways for phosphoxylosylated decorin protein and exogenous xyloside. Eur. J. Biochem. 260, 879–884 (1999)

    Article  PubMed  CAS  Google Scholar 

  41. Kitagawa, H., Tsutsumi, K., Ujikawa, M., Goto, F., Tamura, J., Neumann, K.W., Ogawa, T., Sugahara, K.: Regulation of chondroitin sulfate biosynthesis by specific sulfation. Glycobiology 7, 531–537 (1997)

    Article  PubMed  CAS  Google Scholar 

  42. Lidholt, K., Fjelstad, M., Lindahl, U., Goto, F., Ogawa, T., Kitagawa, H., Sugahara, K.: Assessment of glycosaminoglycan-protein linkage tetrasaccharides as acceptors for GalNAc- and GlcNAc-transferases from mouse mastocytoma. Glycoconj. J. 14, 737–742 (1997)

    Article  PubMed  CAS  Google Scholar 

  43. Bourdon, M.A., Krusius, T., Campbell, S., Schwartz, N.B., Ruoslahti, E.: Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins. Proc. Natl. Acad. Sci. USA 84, 3194–3198 (1987)

    Article  PubMed  CAS  Google Scholar 

  44. Krueger Jr., R.C., Fields, T.A., Hildreth IV, J., Schwartz, N.B.: Chick cartilage chondroitin sulfate proteoglycan core protein. I. Generation and characterization of peptides and specificity for glycosaminoglycan attachment. J. Biol. Chem. 265, 12075–12087 (1990)

    PubMed  CAS  Google Scholar 

  45. Sugumaran, G., Silbert, J.E.: Subfractionation of chick embryo epiphyseal cartilage Golgi. J. Biol. Chem. 266, 9565–9569 (1991)

    PubMed  CAS  Google Scholar 

  46. Sugumaran, G., Katsman, M., Silbert, J.E.: Subcellular co-localization and potential interaction of glucuronosyltransferases with nascent proteochondroitin sulphate at Golgi sites of chondroitin synthesis. Biochem. J. 329, 203–208 (1998)

    PubMed  CAS  Google Scholar 

  47. Prydz, K., Dalen, K.T.: Synthesis and sorting of proteoglycans. J. Cell Sci. 113, 193–205 (2000)

    PubMed  CAS  Google Scholar 

  48. Bai, X., Wei, G., Sinha, A., Esko, J.D.: Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I. J. Biol. Chem. 274, 13017–13024 (1999)

    Article  PubMed  CAS  Google Scholar 

  49. Esko, J.D., Zhang, L.: Influence of core protein sequence on glycosaminoglycan assembly. Curr. Opin. Struct. Biol. 6, 663–670 (1996)

    Article  PubMed  CAS  Google Scholar 

  50. Kolset, S.O., Tveit, H.: Serglycin—structure and biology. Cell. Mol. Life Sci. 65, 1073–1085 (2008)

    Article  PubMed  CAS  Google Scholar 

  51. Fransson, L.-Å.: Structure and function of cell-associated proteoglycans. Trends Biochem. Sci. 12, 406–411 (1987)

    Article  CAS  Google Scholar 

  52. Nadanaka, S., Kitagawa, H., Sugahara, K.: Demonstration of the immature glycosaminoglycan tetrasaccharide sequence GlcAβ1–3Galβ1–3Galβ1–4Xyl on recombinant soluble human α-thrombomodulin. J. Biol. Chem. 273, 33728–33734 (1998)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-aid for Scientific Research (B) (20390019) (to K.S.) and Scientific Research (C) (21590057) (to S.Y.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT), and for Regional R&D Proposal-Based Program from Northern Advancement Center for Science & Technology of Hokkaido, Japan (to K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhei Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akatsu, C., Fongmoon, D., Mizumoto, S. et al. Development of a mouse monoclonal antibody against the chondroitin sulfate-protein linkage region derived from shark cartilage. Glycoconj J 27, 387–399 (2010). https://doi.org/10.1007/s10719-010-9286-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9286-1

Keywords

Navigation