Skip to main content

Advertisement

Log in

NMR-based exploration of the acceptor binding site of human blood group B galactosyltransferase with molecular fragments

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A substantial body of work has been devoted to the design and synthesis of glycosyltransferase inhibitors. A major obstacle has always been the demanding chemistry. Therefore, only few potent and selective inhibitors are known to date. Glycosyltransferases possess two distinct binding sites, one for the donor substrate, and one for the acceptor substrate. In many cases binding to the donor site is well defined but data for acceptor binding is sparse. In particular, acceptor binding sites are often shallow, and in many cases the dimensions of the binding pocket are not well defined. One approach to glycosyltransferase inhibitors is to chemically link donor site and acceptor site ligands to generate high affinity binders. Here, we describe a novel approach to identify acceptor site ligands from a fragment library. We have chosen human blood group B galactosyltransferase (GTB) as a biologically important model target. The approach utilizes a combination of STD NMR, spin-lock filtered NMR experiments and surface plasmon resonance measurements. Following this route we have identified molecular fragments from a fragment library that bind to the acceptor site of GTB with affinities of the order of a natural acceptor substrate. Unlike natural substrates these fragments allow for straightforward chemical modifications and, therefore will serve as scaffolds for potent GTB inhibitors. In general, the approach described is applicable to any glycosyltransferase and may assist in the development of novel glycosyltransferase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.): Essentials of glycobiology. Cold Spring Harbor Laboratory, New York (2009)

    Google Scholar 

  2. Brown, J.R., Fuster, M.M., Li, R., Varki, N., Glass, C.A., Esko, J.D.: A disaccharide-based inhibitor of glycosylation attenuates metastatic tumor cell dissemination. Clin. Cancer Res. 12, 2894–2901 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Kannagi, R.: Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj. J. 20, 353–364 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., Kimura, N.: Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 95, 377–384 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Mathew, B., Schmidt, R.R.: Potential sialyltransferase inhibitors based on neuraminyl substitution by hetaryl rings. Carbohydr. Res. 342, 558–566 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Palcic, M.M., Heerze, L.D., Srivastava, O.P., Hindsgaul, O.: A bisubstrate analog inhibitor for alpha(1–2)-fucosyltransferase. J. Biol. Chem. 264, 17174–17181 (1989)

    CAS  PubMed  Google Scholar 

  7. Jung, K.H., Schmidt, R.R.: Glycosyltransferase inhibitors. In: Wong, C.-H. (ed.) Carbohydrate-based drug discovery, pp. 609–659. Wiley-VCH, Weinheim (2003)

    Chapter  Google Scholar 

  8. Hamilton, S.R., Gerngross, T.U.: Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr. Opin. Biotechnol. 18, 387–392 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Muller, B., Schaub, C., Schmidt, R.R.: Efficient sialyltransferase inhibitors based on transition-state analogues of the sialyl donor. Angew. Chem. Int. Edit. 37, 2893–2897 (1998)

    Article  CAS  Google Scholar 

  10. Schaub, C., Muller, B., Schmidt, R.R.: New sialyltransferase inhibitors based on CMP-quinic acid: development of a new sialyltransferase assay. Glycoconj. J. 15, 345–354 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Skropeta, D., Schworer, R., Haag, T., Schmidt, R.R.: Asymmetric synthesis and affinity of potent sialyltransferase inhibitors based on transition-state analogues. Glycoconj. J. 21, 205–219 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Izumi, M., Yuasa, H., Hashimoto, H.: Bisubstrate analogues as glycosyltransferase inhibitors. Curr. Top Med. Chem. 9, 87–105 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Izumi, M., Kaneko, S., Yuasa, H., Hashimoto, H.: Synthesis of bisubstrate analogues targeting alpha-1, 3-fucosyltransferase and their activities. Org. Biomol. Chem. 4, 681–690 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Yazer, M.H., Olsson, M.L., Palcic, M.M.: The cis-AB blood group phenotype: fundamental lessons in glycobiology. Transfus. Med. Rev. 20, 207–217 (2006)

    Article  PubMed  Google Scholar 

  15. Alfaro, J.A., Zheng, R.B., Persson, M., Letts, J.A., Polakowski, R., Bai, Y., Borisova, S.N., Seto, N.O., Lowary, T.L., Palcic, M.M., Evans, S.V.: ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J. Biol. Chem. 283, 10097–10108 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Patenaude, S.I., Seto, N.O., Borisova, S.N., Szpacenko, A., Marcus, S.L., Palcic, M.M., Evans, S.V.: The structural basis for specificity in human ABO(H) blood group biosynthesis. Nat. Struct. Biol. 9, 685–690 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Mayer, M., Meyer, B.: Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38, 1784–1788 (1999)

    Article  CAS  Google Scholar 

  18. Scherf, T., Anglister, J.: A T1 rho-filtered two-dimensional transferred NOE spectrum for studying antibody interactions with peptide antigens. Biophys. J. 64, 754–761 (1993)

    Article  CAS  PubMed  Google Scholar 

  19. Jahnke, W., Rudisser, S., Zurini, M.: Spin label enhanced NMR screening. J. Am. Chem. Soc. 123, 3149–3150 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Meyer, B., Peters, T.: NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl. 42, 864–890 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Ludwig, C., Guenther, U.L.: Ligand based NMR methods for drug discovery. Front. Biosci. 14, 4565–4574 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Diercks, T., Coles, M., Kessler, H.: Applications of NMR in drug discovery. Curr. Opin. Chem. Biol. 5, 285–291 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Coles, M., Heller, M., Kessler, H.: NMR-based screening technologies. Drug. Discov. Today 8, 803–810 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Pellecchia, M., Bertini, I., Cowburn, D., Dalvit, C., Giralt, E., Jahnke, W., James, T.L., Homans, S.W., Kessler, H., Luchinat, C., Meyer, B., Oschkinat, H., Peng, J., Schwalbe, H., Siegal, G.: Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov. 7, 738–745 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Wyss, D.F., McCoy, M.A., Senior, M.M.: NMR-based approaches for lead discovery. Curr. Opin. Drug Discov. Devel. 5, 630–647 (2002)

    CAS  PubMed  Google Scholar 

  26. Marcus, S.L., Polakowski, R., Seto, N.O., Leinala, E., Borisova, S., Blancher, A., Roubinet, F., Evans, S.V., Palcic, M.M.: A single point mutation reverses the donor specificity of human blood group B-synthesizing galactosyltransferase. J. Biol. Chem. 278, 12403–12405 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Hwang, T.L., Shaka, A.J.: Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. A 112, 275–279 (1995)

    Article  CAS  Google Scholar 

  28. Sindhuwinata, N., Miunoz, E., Munoz, F.J., Palcic, M.M., Peters, H., Peters, T.: Binding of an acceptor substrate analog enhances the enzymatic activity of human blood group B galactosyltransferase. Glycobiology. in press.

  29. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. (2009)

  30. Blume, A., Angulo, J., Biet, T., Peters, H., Benie, A.J., Palcic, M., Peters, T.: Fragment-based screening of the donor substrate specificity of human blood group B galactosyltransferase using saturation transfer difference NMR. J. Biol. Chem. 281, 32728–32740 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Shoemaker, G.K., Soya, N., Palcic, M.M., Klassen, J.S.: Temperature-dependent cooperativity in donor-acceptor substrate binding to the human blood group glycosyltransferases. Glycobiology 18, 587–592 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Stockman, B.J., Dalvit, C.: NMR screening techniques in drug discovery and drug design. Prog. Nucl. Magn. Reson. Spectrosc. 41, 187–231 (2002)

    Article  CAS  Google Scholar 

  33. Dalvit, C., Flocco, M., Knapp, S., Mostardini, M., Perego, R., Stockman, B.J., Veronesi, M., Varasi, M.: High-throughput NMR-based screening with competition binding experiments. J. Am. Chem. Soc. 124, 7702–7709 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. Manzenrieder, F., Frank, A.O., Kessler, H.: Phosphorus NMR spectroscopy as a versatile tool for compound library screening. Angew. Chem. Int. Ed. Engl. 47, 2608–2611 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Klages, J., Coles, M., Kessler, H.: NMR-based screening: a powerful tool in fragment-based drug discovery. Analyst 132, 693–705 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. Leone, M., Freeze, H.H., Chan, C.S., Pellecchia, M.: The Nuclear overhauser effect in the lead identification process. Curr. Drug. Discov. Technol. 3, 91–100 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Sem, D.S., Pellecchia, M.: NMR in the acceleration of drug discovery. Curr. Opin. Drug Discov. Devel. 4, 479–492 (2001)

    CAS  PubMed  Google Scholar 

  38. Schuffenhauer, A., Ruedisser, S., Marzinzik, A.L., Jahnke, W., Blommers, M., Selzer, P., Jacoby, E.: Library design for fragment based screening. Curr. Top Med. Chem. 5, 751–762 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Rudisser, S., Jahnke, W.: NMR and in silico screening. Comb. Chem. High Throughput Screen 5, 591–603 (2002)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Swedish Research Council (VR), The Knut and Alice Wallenberg Foundation and Magn. Bergvalls Stiftelse (G.W.). J.L. acknowledges the Deutscher Akademischer Austausch Dienst and the Swedish Institute for financial support. T.P. acknowledges grants the German Research Council (DFG, HBFG 101/192-1 and ME 1830/1), from the state of Schleswig-Holstein (Innovationsfonds 2005), and from the University of Lübeck. C.R. thanks the Fonds der Chemischen Industrie for a stipend. N.S. thanks the Studienstiftung des Deutschen Volkes for a stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Peters.

Additional information

Supporting information available

Structures of the Maybridge Ro5 library and all experimental data from the screening are available.

This paper is dedicated to Prof. Klaus Bock on the occasion of his 65th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rademacher, C., Landström, J., Sindhuwinata, N. et al. NMR-based exploration of the acceptor binding site of human blood group B galactosyltransferase with molecular fragments. Glycoconj J 27, 349–358 (2010). https://doi.org/10.1007/s10719-010-9282-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9282-5

Keywords

Navigation