Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts


Polysaccharide transglycosylases catalyze disproportionation of polysaccharide molecules by cleaving glycosidic linkages in polysaccharide chains and transferring their cleaved portions to hydroxyl groups at the non-reducing ends of other polysaccharide or oligosaccharide molecules. In plant cell walls, transglycosylases have a potential to catalyze both cross-linking of polysaccharide molecules and grafting of newly arriving polysaccharide molecules into the cell wall structure during cell growth. Here we describe a polysaccharide microarray in form of a glycochip permitting simultaneous high-throughput monitoring of multiple transglycosylase activities in plant extracts. The glycochip, containing donor polysaccharides printed onto nitrocellulose-coated glass slides, was incubated with crude plant extracts, along with a series of fluorophore-labelled acceptor oligosaccharides. After removing unused labelled oligosaccharides by washing, fluorescence retained on the glycochip as a result of transglycosylase reaction was detected with a standard microarray scanner. The glycochip assay was used to detect transglycosylase activities in crude extracts from nasturtium (Tropaeolum majus) and mouse-ear cress (Arabidopsis thaliana). A number of previously unknown saccharide donor-acceptor pairs active in transglycosylation reactions that lead to the formation of homo- and hetero-glycosidic conjugates, were detected. Our data provide experimental support for the existence of diverse transglycosylase activities in crude plant extracts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3





hydroxyethyl cellulose


xyloglucan endotransglycosylase, EC


xyloglucan endotransglycosylase/hydrolase




xyloglucan-derived oligosaccharides






(1-4)-β-D-xylan derived oligosaccharides


mixed-linkage (1-3;1-4)-β-d-glucan oligosaccharides


nonasaccharide Glc4Xyl3Gal2 derived from xyloglucan


thin-layer chromatography


gel-permeation chromatography


matrix-assisted laser-desorption/ionization time-of-flight


high-performance liquid chromatography


phenylmethylsulfonyl fluoride


degree of polymerization


  1. 1.

    Abdel-Massih, R.M., Baydoun, E.A., Brett, C.T.: In vitro biosynthesis of 1, 4-beta-galactan attached to a pectin-xyloglucan complex in pea. Planta 216, 502–511 (2003)

    CAS  PubMed  Google Scholar 

  2. 2.

    Ait Mohand, F., Farkaš, V.: Screening for hetero-transglycosylating activities in extracts from nasturtium (Tropaeolum majus). Carbohydr. Res. 341, 577–581 (2006)

    Article  Google Scholar 

  3. 3.

    Angeloni, S., Ridet, J.L., Kusy, N., Gao, H., Cervoisier, F., Guinchard, S., Kochhar, S., Sigrist, H., Sprenger, N.: Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15, 31–41 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Baydoun, E.A.H., Fry, S.C.: In vivo degradation and extracellular polymer binding of xyloglucan nonasaccharide, a natural anti-auxin. J. Plant Physiol. 134, 453–459 (1989)

    CAS  Google Scholar 

  5. 5.

    Cosgrove, D.J.: Growth of the plant cell wall. Nature Rev. Mol. Cell Biol. 6, 850–861 (2005)

    Article  CAS  Google Scholar 

  6. 6.

    Culf, A.S., Cuperlovic-Culp, M., Oullette, R.J.: Carbohydrate microarrays: survey of fabrication techniques. OMICS 10, 289–310 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Ekins, R., Chu, F.W.: Microarrays: their origins and applications. Trends Biotechnol. 17, 217–218 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Feizi, T., Chai, W.: Oligosaccharide microarrays to decipher the glyco code. Nature Rev. Mol. Cell. Biol. 5, 582–588 (2004)

    Article  CAS  Google Scholar 

  9. 9.

    Femenia, A., Rigby, N.M., Selvendran, R.R., Waldron, K.W.: Investigation of the occurrence of pectic-xylan-xyloglucan complexes in the cell walls of cauliflower stem tissues. Carbohydr. Polymers 39, 151–164 (1999)

    Article  CAS  Google Scholar 

  10. 10.

    Fry, S.C., Mohler, K.E., Nesselrode, B.H.W.A., Franková, L.: Mixed-linkage β-glucan: xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae. Plant J. 55, 240–252 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Fry, S.C.: Novel 'dot-blot’ assays for glycosyltransferases and glycosylhydrolases: optimization for xyloglucan endotransglycosylase (XET) activity. Plant J. 11, 1141–1150 (1997)

    Article  CAS  Google Scholar 

  12. 12.

    Fry, S.C., Smith, R.C., Renwick, K.F., Martin, D.J., Hodge, S.K., Mathews, K.J.: Xyloglucan endotransglycosylase: a new wall-loosening enzyme activity from plants. Biochem. J. 282, 821–826 (1992)

    CAS  PubMed  Google Scholar 

  13. 13.

    Fukui, S., Feizi, T., Galustian, C., Lawson, A.M., Chai, W.: Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nature Biotechnol. 20, 1011–1017 (2002)

    Article  CAS  Google Scholar 

  14. 14.

    Heinrichová, K., Simon, L.M.: Preparation of oligo-(d-galactosiduronic) acids by the action of endo-D-galacturonanase. Biologia (Bratislava) 46, 1081–1087 (1991)

    Google Scholar 

  15. 15.

    Hrmova, M., MacGregor, E.A., Biely, P., Stewart, R.S., Fincher, G.B.: Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1, 4)-β-D-glucan endohydrolase. J. Biol. Chem. 273, 11134–11143 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Hrmova, M., Farkas, V., Lahnstein, J., Fincher, G.B.: A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1, 3;1, 4)-β-d-glucans. J. Biol. Chem. 282, 12951–12962 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Hrmova, M., Farkas, V., Harvey, A.J., Lahnstein, J., Wischmann, B., Kaewthai, N., Ezcurra, I., Teeri, T.T., Fincher, G.B.: Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.). FEBS J 276, 437–456 (2008)

    Article  PubMed  Google Scholar 

  18. 18.

    Keegstra, K., Talmadge, K.W., Bauer, W.D., Albersheim, P.: The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol. 51, 188–196 (1973)

    CAS  Google Scholar 

  19. 19.

    Kosík, O., Farkaš, V.: One-pot fluorescent labeling of xyloglucan oligosaccharides with sulforhodamine. Anal. Biochem. 375, 232–236 (2008)

    Article  PubMed  Google Scholar 

  20. 20.

    Larsen, K., Thygesen, M.B., Guillaumie, F., Willats, W.G.T., Jensen, K.: Solid-phase chemical tools for glycobiology. Carbohydr. Res. 341, 1209–1234 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Lorences, E.P., Fry, S.C.: Xyloglucan oligosaccharides with at least two α-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerisation of xyloglucan. Physiol. Plant. 88, 105–112 (1993)

    Article  CAS  Google Scholar 

  22. 22.

    Manimala, J.C., Roach, T.A., Li, Z., Gildersleeve, J.C.: High-throughput carbohydrate microarray analysis of 24 lectins. Angew. Chem. Int. Ed. 45, 3607–3610 (2006)

    Article  CAS  Google Scholar 

  23. 23.

    Moller, I., Marcus, S.E., Haeger, A., Verhertbruggen, Y., Verhoef, R., Schols, H., Ulvskov, P., Mikkelsen, J.D., Knox, J.P., Willats, W.: High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J. 25, 37–48 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Nishitani, K.: A novel method for detection of endo-xyloglucan transferase. Plant Cell Physiol. 33, 1159–1164 (1992)

    CAS  Google Scholar 

  25. 25.

    Nishitani, K., Tominaga, R.: Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267, 21058–21064 (1992)

    CAS  PubMed  Google Scholar 

  26. 26.

    Park, S., Shin, I.: Carbohydrate microarrays for assaying galactosyltransferase activity. Org. Lett. 26, 1675–1678 (2007)

    Article  Google Scholar 

  27. 27.

    Popper, Z.A., Fry, S.C.: Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells. Ann. Bot. 96, 91–99 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Rose, J.K.C., Braam, J., Fry, S.C., Nishitani, K.: The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43, 1421–1435 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Saura-Valls, M., Fauré, R., Ragàs, S., Piens, K., Brumer, H., Teeri, T.T., Cottaz, S., Driguez, H., Planas, A.: Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endo-transglycosylase. Biochem. J. 395, 99–106 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Schröder, R., Wegrzyn, T.F., Sharma, N.N., Atkinson, R.G.: LeMAN4 endo-β-mannanase from ripe tomato fruit can act as a mannan transglycosylase or hydrolase. Planta 224, 1091–1102 (2006)

    Article  PubMed  Google Scholar 

  31. 31.

    Schröder, R., Wegrzyn, T.F., Bolitho, K.M., Redgwell, R.J.: Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219, 590–600 (2004)

    Article  PubMed  Google Scholar 

  32. 32.

    Schwarz, M., Spector, L., Gargir, A., Shtevi, A., Gortler, M., Alstock, R.T., Dukler, A.A., Dotan, N.: A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 13, 749–754 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Shin, I., Park, S., Lee, M.: Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chemistry, Eur. J. 11, 2894–2901 (2005)

    Article  CAS  Google Scholar 

  34. 34.

    Shipp, M., Nadella, R., Gao, H., Farkas, V., Sigrist, H., Faik, A.: Glyco-array technology for efficient monitoring of plant cell wall glycosyltransferase activities. Glycoconj. J. 25, 49–58 (2008). doi:10.1007/s10719-007-9060-1

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Smith, R.C., Fry, S.C.: Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem. J. 279, 529–535 (1991)

    CAS  PubMed  Google Scholar 

  36. 36.

    Strohmeier, M., Hrmova, M., Fischer, M., Harvey, A.J., Fincher, G.B., Pleiss, J.: Molecular modelling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the Poaceae. Prot. Sci. 13, 3200–3213 (2004)

    Article  CAS  Google Scholar 

  37. 37.

    Sulová, Z., Lednická, M., Farkaš, V.: A colorimetric assay for xyloglucan-endotransglycosylase from germinating seeds. Anal. Biochem. 229, 80–85 (1995)

    Article  PubMed  Google Scholar 

  38. 38.

    Vissenberg, K., Martinez-Vilchez, I.M., Verbelen, J.-P., Miller, J.G., Fry, S.C.: In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12, 1229–1237 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Wang, D., Liu, S., Trummer, B.J., Deng, C., Wang, A.: Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol. 20, 275–281 (2002)

    Article  CAS  Google Scholar 

  40. 40.

    Willats, W.G.T., Rasmussen, S.E., Kristensen, T., Mikkelsen, J.D., Knox, J.P.: Sugar-coated microarrays: a novel slide surface for high-throughput analysis of glycans. Proteomics 2, 166–1671 (2002)

    Article  Google Scholar 

  41. 41.

    Wolfrom, M.L., Thompson, A.: Acetylation. In: Whistler, R.L., Wolfrom, M.L., Bemiller, J.N. (eds.) Methods in carbohydrate chemistry, pp. 143–150. Academic, New York-London (1963)

    Google Scholar 

Download references


This work was supported by a grant from the European Commission 6th Framework Programme, contract number MRTN-CT-2004-512265, acronym WallNet and grant no. 2/0011/09 from the Scientific Grant Agency VEGA, Slovakia. A UK BBSRC grant awarded to S. R. supported R. A. Technical assistance provided by Mrs. L. Fischerová and Mr. T. Lipka is greatly appreciated.

Author information



Corresponding author

Correspondence to Vladimír Farkaš.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effect of 100 μM concentrations of non-labelled oligosaccharides (XGOs, CEOs, LAOs) on the microarray reaction between XG and XGOs-SR catalyzed by crude extract from germinated nasturtium seeds. Incubation proceeded at 30°C for 4 h. Control incubation was performed in the absence of nonlabelled oligosaccharides. The inhibition was apparent with only XGOs. The polysaccharide layouts are depicted in Fig. 1. (PDF 186 kb)

Fig. S2

Effect of pH on the transglycosylation reactions with 10 μM XGO-SR catalyzed by a crude extract from germinated nasturtium seeds. The polysaccharide layouts are depicted in Fig. 1. (PDF 66.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kosík, O., Auburn, R.P., Russell, S. et al. Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts. Glycoconj J 27, 79–87 (2010). https://doi.org/10.1007/s10719-009-9271-8

Download citation


  • Glycochip
  • Microarray
  • Oligosaccharides
  • Plant cell wall
  • Transglycosylation
  • XET