Skip to main content

Advertisement

Log in

Transcriptional regulation of the human ST6GAL2 gene in cerebral cortex and neuronal cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The second human β-galactoside α-2,6-sialyltransferase (hST6Gal II) differs from hST6Gal I, the first member of ST6Gal family, in substrate specificity and tissue expression pattern. While ST6GAL1 gene is expressed in almost all human tissues, ST6GAL2 shows a restricted tissue-specific pattern of expression, mostly expressed in embryonic and adult brain. In order to understand the mechanisms involved in the transcriptional regulation of ST6GAL2, we first characterized the transcription start sites (TSS) in SH-SY5Y neuroblastoma cells. 5′ RACE experiments revealed multiple TSS located on three first alternative 5′ exons, termed EX, EY and EZ, which are unusually close on the genomic sequence and are all located more than 42 kbp upstream of the first common coding exon. Using Taqman duplex Q-PCR, we showed that the ST6GAL2 transcripts initiated by EX or EY are mainly expressed in both brain-related cell lines and human cerebral cortex, testifying for the use of a similar transcriptional regulation in vivo. Furthermore, we also showed for the first time hST6Gal II protein expression in the different lobes of the human cortex. Luciferase reporter assays allowed us to define two sequences upstream EX and EY with a high and moderate promoter activity, respectively. Bioinformatics analysis and site-directed mutagenesis showed that NF-κB and NRSF are likely to act as transcriptional repressors, whereas neuronal-related development factors Sox5, Purα and Olf1, are likely to act as transcriptional activators of ST6GAL2. This suggests that ST6GAL2 transcription could be potentially activated for specific neuronal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DSiaT:

drosophila sialyltransferase

Gal:

β-D-galactopyranosyl

GalNAc:

β-D-N-acetylgalactosaminyl

GlcNAc:

β-D-N-acetylglucosaminyl

HPRT:

hypoxanthine phosphoribosyltransferase

LDN:

LacdiNAc, GalNAcβ1-4GlcNAc

LN:

LacNAc, Galβ1-4GlcNAc

NF-κB:

nuclear factor-kappa B

NRSF:

neuron-restrictive silencer factor

Olf1:

olfactory neuron-specific binding protein

Purα:

purin-riche element binding protein alpha

Q-PCR:

quantitative polymerase chain reaction

RACE:

rapid amplification of cDNA end

Sia:

sialic acid

SLDN:

siaLacdiNAc, Siaα2-6GalNAcβ1-4GlcNAc

SLN:

sialyl-LacNAc, Siaα2-6Galβ1-4GlcNAc

Sox5:

SRY box 5

SP1:

specificity protein 1

TSS:

transcriptional start site

UTR:

untranslated region

References

  1. Coutinho, P.M., Deleury, E., Davies, G.J., Henrissat, B.: An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328(2), 307–317 (2003)

    Article  PubMed  CAS  Google Scholar 

  2. Harduin-Lepers, A., Mollicone, R., Delannoy, P., Oriol, R.: The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology. 15(8), 805–817 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. Harduin-Lepers, A., Recchi, M.A., Delannoy, P.: 1994, the year of sialyltransferases. Glycobiology. 5(8), 741–758 (1995)

    Article  PubMed  CAS  Google Scholar 

  4. Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S., Delannoy, P.: The human sialyltransferase family. Biochimie. 83(8), 727–737 (2001)

    Article  PubMed  CAS  Google Scholar 

  5. Weinstein, J., Lee, E.U., McEntee, K., Lai, P.H., Paulson, J.C.: Primary structure of beta-galactoside alpha 2,6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. J. Biol. Chem. 262(36), 17735–17743 (1987)

    PubMed  CAS  Google Scholar 

  6. Paulson, J.C., Rearick, J.I., Hill, R.L.: Enzymatic properties of beta-D-galactoside alpha2 leads to 6 sialytransferase from bovine colostrum. J. Biol. Chem. 252(7), 2363–2371 (1977)

    PubMed  CAS  Google Scholar 

  7. Lance, P., Lau, K.M., Lau, J.T.: Isolation and characterization of a partial cDNA for a human sialyltransferase. Biochem. Biophys. Res. Commun. 164(1), 225–232 (1989)

    Article  PubMed  CAS  Google Scholar 

  8. Krzewinski-Recchi, M.A., Julien, S., Juliant, S., Teintenier-Lelievre, M., Samyn-Petit, B., Montiel, M.D., Mir, A.M., Cerutti, M., Harduin-Lepers, A., Delannoy, P.: Identification and functional expression of a second human beta-galactoside alpha2, 6-sialyltransferase, ST6Gal II. Eur. J. Biochem. 270(5), 950–961 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. Takashima, S., Tsuji, S., Tsujimoto, M.: Characterization of the second type of human beta-galactoside alpha 2, 6-sialyltransferase (ST6Gal II), which sialylates Galbeta 1, 4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes. J. Biol. Chem. 277(48), 45719–45728 (2002)

    Article  PubMed  CAS  Google Scholar 

  10. Rohfritsch, P.F., Joosten, J.A., Krzewinski-Recchi, M.A., Harduin-Lepers, A., Laporte, B., Juliant, S., Cerutti, M., Delannoy, P., Vliegenthart, J.F., Kamerling, J.P.: Probing the substrate specificity of four different sialyltransferases using synthetic beta-D-Galp-(1– > 4)-beta-D-GlcpNAc-(1– > 2)-alpha-D-Manp-(1– > O) (CH(2))7CH3 analogues general activating effect of replacing N-acetylglucosamine by N-propionylglucosamine. Biochim. Biophys. Acta. 1760(4), 685–692 (2006)

    PubMed  CAS  Google Scholar 

  11. Koles, K., Irvine, K.D., Panin, V.M.: Functional characterization of Drosophila sialyltransferase. J Biol Chem. 279(6), 4346–4357 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. Kitagawa, H., Paulson, J.C.: Differential expression of five sialyltransferase genes in human tissues. J Biol Chem. 269(27), 17872–17878 (1994)

    PubMed  CAS  Google Scholar 

  13. Ishii, A., Ikeda, T., Hitoshi, S., Fujimoto, I., Torii, T., Sakuma, K., Nakakita, S., Hase, S., Ikenaka, K.: Developmental changes in the expression of glycogenes and the content of N-glycans in the mouse cerebral cortex. Glycobiology. 17(3), 261–276 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. Bergwerff, A.A., Van Oostrum, J., Kamerling, J.P., Vliegenthart, J.F.: The major N-linked carbohydrate chains from human urokinase. The occurrence of 4-O-sulfated, (alpha 2–6)-sialylated or (alpha 1–3)-fucosylated N-acetylgalactosamine(beta 1–4)-N-acetylglucosamine elements. Eur. J. Biochem. 228(3), 1009–1019 (1995)

    Article  PubMed  CAS  Google Scholar 

  15. Dell, A., Morris, H.R., Easton, R.L., Panico, M., Patankar, M., Oehniger, S., Koistinen, R., Koistinen, H., Seppala, M., Clark, G.F.: Structural analysis of the oligosaccharides derived from glycodelin, a human glycoprotein with potent immunosuppressive and contraceptive activities. J. Biol. Chem. 270(41), 24116–24126 (1995)

    Article  PubMed  CAS  Google Scholar 

  16. Weisshaar, G., Hiyama, J., Renwick, A.G., Nimtz, M.: NMR investigations of the N-linked oligosaccharides at individual glycosylation sites of human lutropin. Eur. J. Biochem. 195(1), 257–268 (1991)

    Article  PubMed  CAS  Google Scholar 

  17. Bonfanti, L.: PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog. Neurobiol. 80(3), 129–164 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Durbec, P., Cremer, H.: Revisiting the function of PSA-NCAM in the nervous system. Mol. Neurobiol. 24(1–3), 53–64 (2001)

    PubMed  CAS  Google Scholar 

  19. Wang, X., Vertino, A., Eddy, R.L., Byers, M.G., Jani-Sait, S.N., Shows, T.B., Lau, J.T.: Chromosome mapping and organization of the human beta-galactoside alpha 2, 6-sialyltransferase gene. Differential and cell-type specific usage of upstream exon sequences in B-lymphoblastoid cells. J. Biol. Chem. 268(6), 4355–4361 (1993)

    PubMed  CAS  Google Scholar 

  20. Lo, N.W., Lau, J.T.: Transcription of the beta-galactoside alpha 2, 6-sialyltransferase gene in B lymphocytes is directed by a separate and distinct promoter. Glycobiology. 6(3), 271–279 (1996)

    Article  PubMed  CAS  Google Scholar 

  21. Aas-Eng, D.A., Asheim, H.C., Deggerdal, A., Smeland, E., Funderud, S.: Characterization of a promoter region supporting transcription of a novel human beta-galactoside alpha-2,6-sialyltransferase transcript in HepG2 cells. Biochim. Biophys. Acta. 1261(1), 166–169 (1995)

    PubMed  Google Scholar 

  22. Zhang, X., Ding, L., Sandford, A.J.: Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Mol. Biol 6(1), 4 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. Quandt, K., Frech, K., Karas, H., Wingender, E., Werner, T.: MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23(23), 4878–4884 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. Svensson, E.C., Soreghan, B., Paulson, J.C.: Organization of the beta-galactoside alpha 2, 6-sialyltransferase gene. Evidence for the transcriptional regulation of terminal glycosylation. J. Biol. Chem. 265(34), 20863–20868 (1990)

    PubMed  CAS  Google Scholar 

  25. Taniguchi, A., Hioki, M., Matsumoto, K.: Transcriptional regulation of human Galbeta1, 3GalNAc/Galbeta1, 4GlcNAc alpha2, 3-sialyltransferase (hST3Gal IV) gene in testis and ovary cell lines. Biochem. Biophys. Res. Commun. 301(3), 764–768 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. Yoshida, Y., Kurosawa, N., Kanematsu, T., Kojima, N., Tsuji, S.: Genomic structure and promoter activity of the mouse polysialic acid synthase gene (mST8Sia II). Brain-specific expression from a TATA-less GC-rich sequence. J. Biol. Chem. 271(47), 30167–30173 (1996)

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki, Y., Taira, H., Tsunoda, T., Mizushima-Sugano, J., Sese, J., Hata, H., Ota, T., Isogai, T., Tanaka, T., Morishita, S., Okubo, K., Sakaki, Y., Nakamura, Y., Suyama, A., Sugano, S.: Diverse transcriptional initiation revealed by fine, large-scale mapping of mRNA start sites. EMBO Rep. 2(5), 388–393 (2001)

    PubMed  CAS  Google Scholar 

  28. Taniguchi, A.: Promoter structure and transcriptional regulation of human beta-galactoside alpha2, 3-sialyltransferase genes. Curr. Drug Targets. 9(4), 310–316 (2008)

    Article  PubMed  CAS  Google Scholar 

  29. Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R., Yamamoto, J., Sekine, M., Tsuritani, K., Wakaguri, H., Ishii, S., Sugiyama, T., Saito, K., Isono, Y., Irie, R., Kushida, N., Yoneyama, T., Otsuka, R., Kanda, K., Yokoi, T., Kondo, H., Wagatsuma, M., Murakawa, K., Ishida, S., Ishibashi, T., Takahashi-Fujii, A., Tanase, T., Nagai, K., Kikuchi, H., Nakai, K., Isogai, T., Sugano, S.: Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome. Res. 16(1), 55–65 (2006)

    Article  PubMed  CAS  Google Scholar 

  30. Kaneko, Y., Yamamoto, H., Colley, K.J., Moskal, J.R.: Expression of Gal beta 1, 4GlcNAc alpha 2, 6-sialyltransferase and alpha 2, 6-linked sialoglycoconjugates in normal human and rat tissues. J. Histochem. Cytochem. 43(9), 945–954 (1995)

    PubMed  CAS  Google Scholar 

  31. Kaneko, Y., Yamamoto, H., Kersey, D.S., Colley, K.J., Leestma, J.E., Moskal, J.R.: The expression of Gal beta 1, 4GlcNAc alpha 2, 6 sialyltransferase and alpha 2, 6-linked sialoglycoconjugates in human brain tumors. Acta Neuropathol. 91(3), 284–292 (1996)

    Article  PubMed  CAS  Google Scholar 

  32. Andrews, P.W.: Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol. 103(2), 285–293 (1984)

    Article  PubMed  CAS  Google Scholar 

  33. Preis, P.N., Saya, H., Nadasdi, L., Hochhaus, G., Levin, V., Sadee, W.: Neuronal cell differentiation of human neuroblastoma cells by retinoic acid plus herbimycin A. Cancer Res. 48(22), 6530–6534 (1988)

    PubMed  CAS  Google Scholar 

  34. Recchi, M.A., Harduin-Lepers, A., Boilly-Marer, Y., Verbert, A., Delannoy, P.: Multiplex RT-PCR method for the analysis of the expression of human sialyltransferases: application to breast cancer cells. Glycoconj. J. 15(1), 19–27 (1998)

    Article  PubMed  CAS  Google Scholar 

  35. Groux-Degroote, S., Krzewinski-Recchi, M.A., Cazet, A., Vincent, A., Lehoux, S., Lafitte, J.J., Van Seuningen, I., Delannoy, P.: IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated Lewisx epitopes in the human bronchial mucosa. Biochem. J. 410(1), 213–223 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. Sur, M., Rubenstein, J.L.: Patterning and plasticity of the cerebral cortex. Science 310(5749), 805–810 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. Rash, B.G., Grove, E.A.: Area and layer patterning in the developing cerebral cortex. Curr. Opin. Neurobiol. 16(1), 25–34 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. Yang, X., Schadt, E.E., Wang, S., Wang, H., Arnold, A.P., Ingram-Drake, L., Drake, T.A., Lusis, A.J.: Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome. Res. 16(8), 995–1004 (2006)

    Article  PubMed  CAS  Google Scholar 

  39. Cowley, M.J., Cotsapas, C.J., Williams, R.B., Chan, E.K., Pulvers, J.N., Liu, M.Y., Luo, O.J., Nott, D.J., Little, P.F.: Intra- and inter-individual genetic differences in gene expression. Mamm. Genome. 20(5), 281–295 (2009)

    Article  PubMed  CAS  Google Scholar 

  40. Kerber, R.A., O’Brien, E., Cawthon, R.M.: Gene expression profiles associated with aging and mortality in humans. Aging Cell. 8(3), 239–250 (2009)

    Article  PubMed  CAS  Google Scholar 

  41. Meffert, M.K., Baltimore, D.: Physiological functions for brain NF-kappaB. Trends Neurosci. 28(1), 37–43 (2005)

    Article  PubMed  CAS  Google Scholar 

  42. Grundstrom, S., Anderson, P., Scheipers, P., Sundstedt, A.: Bcl-3 and NFkappaB p50–p50 homodimers act as transcriptional repressors in tolerant CD4+ T cells. J. Biol. Chem. 279(9), 8460–8468 (2004)

    Article  PubMed  CAS  Google Scholar 

  43. Kastenbauer, S., Ziegler-Heitbrock, H.W.: NF-kappaB1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect. Immun. 67(4), 1553–1559 (1999)

    PubMed  CAS  Google Scholar 

  44. Kostadinova, R.M., Nawrocki, A.R., Frey, F.J., Frey, B.M.: Tumor necrosis factor alpha and phorbol 12-myristate-13-acetate down-regulate human 11beta-hydroxysteroid dehydrogenase type 2 through p50/p50 NF-kappaB homodimers and Egr-1. FASEB J. 19(6), 650–652 (2005)

    PubMed  CAS  Google Scholar 

  45. Ballas, N., Mandel, G.: The many faces of REST oversee epigenetic programming of neuronal genes. Curr. Opin. Neurobiol. 15(5), 500–506 (2005)

    Article  PubMed  CAS  Google Scholar 

  46. Lunyak, V.V., Rosenfeld, M.G.: No rest for REST: REST/NRSF regulation of neurogenesis. Cell. 121(4), 499–501 (2005)

    Article  PubMed  CAS  Google Scholar 

  47. Darbinian, N., White, M.K., Khalili, K.: Regulation of the Pur-alpha promoter by E2F–1. J. Cell Biochem. 99(4), 1052–1063 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Khalili, K., Del Valle, L., Muralidharan, V., Gault, W.J., Darbinian, N., Otte, J., Meier, E., Johnson, E.M., Daniel, D.C., Kinoshita, Y., Amini, S., Gordon, J.: Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol. Cell Biol. 23(19), 6857–6875 (2003)

    Article  PubMed  CAS  Google Scholar 

  49. Lai, T., Jabaudon, D., Molyneaux, B.J., Azim, E., Arlotta, P., Menezes, J.R., Macklis, J.D.: SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron. 57(2), 232–247 (2008)

    Article  PubMed  CAS  Google Scholar 

  50. Wang, S.S., Tsai, R.Y., Reed, R.R.: The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J. Neurosci. 17(11), 4149–4158 (1997)

    PubMed  CAS  Google Scholar 

  51. Li, Q., Verma, I.M.: NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2(10), 725–734 (2002)

    Article  PubMed  CAS  Google Scholar 

  52. Neilson, D.E., Feiler, H.S., Wilhelmsen, K.C., Lynn, A., Eiben, R.M., Kerr, D.S., Warman, M.L.: Autosomal dominant acute necrotizing encephalopathy maps to 2q12.1-2q13. Ann. Neurol. 55(2), 291–294 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sylvain Lehoux is a recipient of a fellowship from the Ministère de la Recherche et de l’Enseignement. We thank le Centre National de la Recherche Scientifique and the University of Lille I.

We also thank the Lille Neurobanque, (Directed by Dr C. Libersa, France), for providing the human brain tissues samples. We are grateful to Béatrice Teylaert and Fala El-Machhour for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Ange Krzewinski-Recchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehoux, S., Groux-Degroote, S., Cazet, A. et al. Transcriptional regulation of the human ST6GAL2 gene in cerebral cortex and neuronal cells. Glycoconj J 27, 99–114 (2010). https://doi.org/10.1007/s10719-009-9260-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9260-y

Keywords

Navigation